Abstract:
An electromagnetic survey acquisition system includes a sensor cable and a source cable, each deployable in a body of water, and a recording system. The sensor cable includes an electromagnetic sensor thereon. The source cable includes an electromagnetic antenna thereon. The recording system includes a source current generator, a current sensor, and an acquisition controller. The source current generator powers the source cable to emit an electromagnetic field from the antenna. The current sensor is coupled to the source current generator. The acquisition controller interrogates the electromagnetic sensor and the current sensor at selected times in a synchronized fashion.
Abstract:
Disclosed are methods and systems for suppression of noise in electromagnetic surveying that includes stacking two or more frames of electromagnetic data. An example embodiment discloses a method for suppressing swell-induced noise in an electromagnetic survey, comprising: measuring an electromagnetic field parameter at one or more positions to provide an electromagnetic signal, the electromagnetic signal comprising a swell-induced portion; and stacking two or more frames of the electromagnetic signal to provide a stacked signal in which the swell-induced portion is suppressed, wherein the swell-induced portion is out of phase between the two or more frames.
Abstract:
A sensor streamer stretch section. At least some of the example embodiments are methods including measuring at least one parameter related to noise while towing the sensor streamer through a body of water with a towing vessel, and adjusting at least one of a spring constant and a damping coefficient of a stretch section disposed proximate the sensor streamer such that the measured parameter is minimized.
Abstract:
A system and method is provided for identifying degrading electrodes in a marine electromagnetic survey system. A system may comprise a sensor array operable for use in a marine electromagnetic survey system, wherein the sensor array comprises a plurality of electrodes. The system may comprise a shunt resistor connected to the electrodes and a processor operable to vary a resistance of the shunt resistor in the presence of a voltage across the electrodes. A method for identifying degrading electrodes may comprise measuring an electric field in a body of water with a pair of electrodes, wherein a shunt resistor is connected between the pair of electrodes. The method may comprise varying a resistance of the shunt resistor. The method may comprise measuring a voltage across the shunt resistor while varying the resistance of the shunt resistor to obtain measured voltages for different shunt resistor values. The method may comprise comparing the measured voltages of the different shunt resistor values to calculate resistance of the pair of electrodes.
Abstract:
An electromagnetic survey acquisition system includes a sensor cable and a source cable, each deployable in a body of water, and a recording system. The sensor cable includes an electromagnetic sensor thereon. The source cable includes an electromagnetic antenna thereon. The recording system includes a source current generator, a current sensor, and an acquisition controller. The source current generator powers the source cable to emit an electromagnetic field from the antenna. The current sensor is coupled to the source current generator. The acquisition controller interrogates the electromagnetic sensor and the current sensor at selected times in a synchronized fashion.
Abstract:
A sensor streamer stretch section includes at least one spring. A means for coupling the spring at each end to at least one of a sensor streamer and a lead in cable is included. A cable is coupled at its ends to the means for coupling. The cable is capable of carrying at least one of electrical and optical signals. The cable is formed such that the cable undergoes substantially no axial strain when the shock cord is elongated. An adjustable damper is coupled between the means for coupling at each end of the stretch section.