Abstract:
An image capturing apparatus includes a first camera that captures a first image, a second camera that captures a second image, a lens cover that includes transparent parts and ridgelines and that covers the first camera and the second camera, and a processing circuit that identifies a pixel located in an area, in which it is necessary to interpolate a pixel value, in the first image, and generates an output image using the first image and interpolation pixel information for interpolating a pixel value of the identified pixel. Each ridgeline between adjacent parts of the lens cover is twisted with respect to a base line extending between a center of a first lens of the first camera and a center of a second lens of the second camera. An upper part of the lens cover opposes a base on which the first camera and the second camera are disposed.
Abstract:
A three-dimensional motion obtaining apparatus includes: a light source; a charge amount obtaining circuit that includes pixels and obtains, for each of the pixels, a first charge amount under a first exposure pattern and a second charge amount under a second exposure pattern having an exposure period that at least partially overlaps an exposure period of the first exposure pattern; and a processor that controls a light emission pattern for the light source, the first exposure pattern, and the second exposure pattern. The processor estimates a distance to a subject for each of the pixels on the basis of the light emission pattern and on the basis of the first charge amount and the second charge amount of each of the pixels obtained by the charge amount obtaining circuit, and estimates an optical flow for each of the pixels on the basis of the first exposure pattern, the second exposure pattern, and the first charge amount and the second charge amount obtained by the charge amount obtaining circuit.
Abstract:
Provided are: a point group obtainer that obtains three-dimensional point group data indicating three-dimensional locations of each of a plurality of three-dimensional points included in an imaging space of one or more cameras; a camera parameter calculator that (i) obtains corresponding points, for each of the plurality of three-dimensional points, in individual images captured using the one or more cameras, based on the three-dimensional point group data and an initial camera parameter of each camera, and (ii) calculates a camera parameter of each camera on the basis of the initial camera parameter of each camera and pixel values, included in the individual images, at the corresponding points; and a camera parameter outputter that outputs the calculated camera parameter of each camera.
Abstract:
An imaging apparatus includes an imaging device, a first imaging optical system and a second imaging optical system that form respective input images from mutually different viewpoints onto the imaging device, and a first modulation mask and a second modulation mask that modulate the input images formed by the first imaging optical system and the second imaging optical system. The imaging device captures a superposed image composed of the two input images that have been formed by the first imaging optical system and the second imaging optical system, modulated by the first modulation mask and the second modulation mask, and optically superposed on each other, and the first modulation mask and the second modulation mask have mutually different optical transmittance distribution characteristics.
Abstract:
An imaging apparatus includes an image-forming optical system that forms an image by using optical signals; an imaging device that includes a plurality of pixels, receives, with the plurality of pixels, the optical signals used to form the image, and converts the optical signals into electric signals; and a color filter that is located between the image-forming optical system and the imaging device and has a light transmittance which differs according to positions on the color filter corresponding to the plurality of pixels and according to a plurality of wavelength bands.
Abstract:
A range-information acquiring apparatus includes a light source, an image sensor, a control circuit, and a signal processing circuit. The control circuit causes the light source to emit first light toward a scene and subsequently emit second light toward the scene, the first light having a first spatial distribution, the second light having a second spatial distribution. The control circuit causes at least a portion of plural photodetector elements of the photodetector device to detect first reflected light and second reflected light in the same exposure period, the first reflected light being caused by reflection of the first light from the scene, the second reflected light being caused by reflection of the second light from the scene. The signal processing circuit generates range data based on photodetection data output from the photodetector elements of the photodetector device.
Abstract:
An imaging system serving as an image generation device is provided with: a random color filter array that has a plurality of concave lenses and a plurality of color filters having different transmission characteristics; a photodiode that receives light that has passed through the random color filter array; an AD converter that converts the light received by the photodiode into digital data; and a color image generation circuit that generates an image using the digital data and modulation information of the random color filter array, in which the plurality of concave lenses are located between the plurality of color filters and the photodiode, or the plurality of color filters are located between the plurality of concave lenses and the photodiode.
Abstract:
An imaging system serving as an image generation device is provided with: a random optical filter array that has a plurality of types of optical filters and a scattering unit; photodiodes that receive light transmitted through the random optical filter array; an AD conversion unit that converts the light received by the photodiodes, into digital data; and a color image generation circuit that generates an image, using the digital data and modulation information of the random optical filter array, in which the scattering unit is located between the plurality of types of optical filters and the photodiodes, and in which the scattering unit includes a material having a first refractive index, and a material having a second refractive index that is different from the first refractive index.
Abstract:
A crossing point detector includes memory and a crossing point detection unit that reads out a square image from a captured image in the memory, and detects a crossing point of two boundary lines in a checker pattern depicted in the square image. The crossing point detection unit decides multiple parameters of a function model treating two-dimensional image coordinates as variables, the parameters optimizing an evaluation value based on a difference between corresponding pixel values represented by the function model and the square image, respectively, and computes the position of a crossing point of two straight lines expressed by the decided multiple parameters to thereby detect the crossing point with subpixel precision. The function model uses a curved surface that is at least first-order differentiable to express pixel values at respective positions in a two-dimensional coordinate system at the boundary between black and white regions.
Abstract:
A camera-parameter-set calculation apparatus includes a three-dimensional point group calculator that calculates a plurality of three-dimensional coordinates, based on first and second images respectively captured by first and second cameras and first and second camera parameter sets of the first and second cameras; an evaluation value calculator that determines a plurality of pixel coordinates in the second image, based on the plurality of three-dimensional coordinates and the second camera parameter set, determines a plurality of third pixel coordinates in a third image captured by a third camera, based on the plurality of three-dimensional coordinates and a third camera parameter set of the third camera, and calculates an evaluation value, based on pixel values at the plurality of second and third pixel coordinates in the second and third images; and a camera-parameter-set determiner that determines a fourth camera parameter set for the third camera, based on the evaluation value.