Abstract:
A relay apparatus in a wireless power transmission system includes a relay power reception antenna that receives power transmission alternating current power from a power transmission power transmission antenna, a relay rectifier that converts the power transmission alternating current power into relay direct current power, a relay inverter circuit that converts the relay direct current power into relay alternating current power, and a relay power transmission antenna that wirelessly transmits the relay alternating current power. When the relay apparatus has received binary relay received data, the relay apparatus reverses a sign of the binary relay received data and eliminates a difference between a first voltage of the relay direct current power and a second voltage of the relay direct current power on the basis of the reversed binary relay received data.
Abstract:
A wireless power transmission system includes a power transmission apparatus, a power reception apparatus, a load driving apparatus, and a power control apparatus. The power control apparatus includes a direct current power supply, a main control circuit, and a communicator. Each time an operation load to be achieved by the load driving apparatus changes, the main control circuit updates a load instruction value for the load driving apparatus and a control parameter for adjusting a voltage of first alternating current power, the control parameter being used by the power transmission apparatus to convert first direct current power into the first alternating current power. The power transmission apparatus includes an inverter circuit and a power transmission control circuit that determines the voltage of the first alternating current power on the basis of the control parameter updated by the power control apparatus and that controls the inverter circuit.
Abstract:
A wireless power transmission system includes: a power transmitting device; a power receiving device; and a relay device. In a state where the relay side switch circuit has the relay side rectifier and the relay side load in a non-contact state, and the receiving side switch circuit has the receiving side rectifier and the receiving side load in a non-contact state, power is transmitted from the power transmitting device to the power receiving device via the relay device. After a DC voltage output from the receiving side rectifier reaching a requested voltage of the power receiving device, the receiving side switch circuit connects the receiving side rectifier to the receiving side load at a timing T2 that is different from a timing T1 at which the relay side switch circuit connects the relay side rectifier to the relay side load.
Abstract:
A power receiving device includes a power receiving antenna that receives AC power from a power transmitting antenna, a rectifier circuit that converts the AC power into DC power, a detection circuit that detects the DC power, a load driven by the DC power, a battery that charges the DC power, a switching circuit that provides i) connection and disconnection between the rectifier circuit and the load and ii) connection and disconnection between the load and the battery, and a control circuit that controls the power receiving device. The control circuit controls the switching circuit to disconnect the rectifier circuit from the load and connect the load to the battery if the DC power is less than or equal to a power threshold value, and drive the load by the DC power charged in the battery.
Abstract:
A power transmitting device determines transmitting power P(t1) at a beginning of a first unit time, and transmitting power P(t2) at an end of the first unit time, stores a control parameter Q(t3) that determines a voltage of the transmitting power at a beginning of a second unit time, and a control parameter Q(t4) that determines a voltage of the transmitting power at an end of the second unit time, determines a power difference ΔP=P(t2)−P(t1) and a difference ΔQ=Q(t4)−Q(t3) in the control parameter Q, and, if the ΔP is equal to or larger than a first threshold and an absolute value of the ΔQ is equal to or larger than a second threshold, determines that there is a foreign object between a receiver resonator and a transmitter resonator and decreases the transmitting power output from an inverter circuit.
Abstract:
A power transmission device includes an inverter, an oscillator, a foreign substance detector, and a power transmission control circuitry. The power transmission control circuitry causes the foreign substance detector to perform a series of multiple processes and determine whether a foreign substance is present before a transmission of first AC power starts, and then causes the inverter to start the transmission of the first AC power. After the transmission starts, a detection period in which foreign substance detecting is performed and a power transmission period in which transmission of the first AC power is performed are repeated. The series of multiple processes is divided and performed in the multiple repeated detecting periods. The foreign substance detector is caused to divide and perform the series of multiple processes using the detecting periods and determine whether a foreign substance is present.
Abstract:
A power transmission device includes an inverter using a frequency f11 lower than a frequency f0 between a first resonator and a second resonator or a frequency f12 higher than the frequency f0 to generate a first power; an oscillator using a frequency f10 lower than a frequency fr between the first resonator and a third resonator or a frequency f20 higher than the frequency fr to generate a second power; and a power transmission control circuitry setting a foreign object detection period between first and second transmission periods, using the frequency f11 or frequency f12 in the first transmission period, using the frequency f10 or frequency f20 in the foreign object detection period, and if it is determined that a substance is present in the foreign object detection period, transmitting power in the second transmission period at a frequency different from the frequency used in the first transmission period.