Abstract:
An access point communicates with a wireless station based on a point-to-point channel, to determine time instances of future communication to be received from the wireless station. In intervals between such future communications, the access point powers down at least some portions of a circuit contained within the access point for at least a partial duration between such future communications. In an embodiment, the powered-down portions include the receiver portions of the access point. The access point may be battery-powered, and the powering-down of the receiver portions enables reduction of power consumption in the access point.
Abstract:
A link device facilitating communication between a wireless communication terminal and a resource-constrained device. According to an aspect, the link device receives messages from the wireless communication terminal on a wireless path according to a first protocol, converts the messages into a second protocol, and forwards the converted messages in the second protocols to the resource-constrained device on a wired path connecting the link device to the resource-constrained device. In an embodiment, the first protocol corresponds to HTTP protocol and the second protocol corresponds to a simpler protocol which requires relatively lesser processing and memory resources.
Abstract:
A wireless station (A) is operated in a power-save mode, in which the station is alternately in power-ON and power-OFF states to reduce power consumption. Wireless station (A) computes at least some future time instances at which another wireless station (B) is expected to start transmitting control messages. Wireless station (A) is ensured to be in the power-ON state in corresponding time intervals encompassing durations of at least some of such future transmissions of control messages by wireless station (B), and is thereby enabled to receive the control messages. In an embodiment, the control messages correspond to group key message updates in which values of a decryption key are transmitted, wireless station (A) being a wireless client, wireless station (B) being an access point, with wireless stations (A) and (B) operating in a wireless network consistent with IEEE 802.11 specifications, and communication between wireless stations (A) and (B) being encrypted.
Abstract:
The services offered (e.g., bandwidth) by a PVC can be changed, potentially as and when desired. An end system (of a PVC) may send a request to initiate a change of a service. Each intermediate system may first determine whether the service change can be supported, and passes the request to the next system in the path until the request is received by the other end system of the PVC. Assuming the other end system also can support the change, an acceptance response is propagated in the reverse direction of the same path. Each system may effect the service change upon receiving the acceptance response.
Abstract:
An edge router receives datagrams to be forwarded an SVC. If the SVC is not already set up, the edge router buffers the datagrams until the SVC set up is complete. The buffered datagrams are forwarded once the SVC set up is complete. According to another aspect of the present invention, different buffering requirements are supported for different user applications. A policy table may be configured by a service provider specifying the requirements associated with potentially each flow (e.g., combination of source/destination IP addresses, source/destination port number), and the datagram on each flow may be buffered accordingly.
Abstract:
A network device (e.g., network access server or home gateway) providing different QOS (quality of services) to different layer-3 datagrams when transporting on tunnels. A tunnel may be implemented to provide different QOS to different packets depending on the packet header. The network device examines the header of each datagram to determine the specific QOS to be provided. At least the data portion in the datagram is encapsulated for transportation on the tunnel. The encapsulated data portion in turn is encapsulated in the form of one or more packets, with the packet format to reflect the QOS determined for the datagram. When the tunnel is implemented on UDP/IP and the datagram is an IP (Internet protocol) datagram, the TOS/Precedence bits of the IP datagram may be copied into the precedence/TOS bits of the UDP/IP packet(s).
Abstract:
An aspect of the present disclosure enables an access point (AP) to conveniently provision multiple wireless devices. In an embodiment, the AP may normally operate in a secure mode to disregard non-secure provisioning requests from wireless devices. However, upon receipt of a request to accept provisioning requests from multiple wireless devices, the AP permits multiple wireless devices to be provisioned via the AP, in response to corresponding provisioning requests received from the respective wireless devices. The request to accept may be generated upon pressing of a push button provided on the AP, which may be referred to as a group provisioning button since multiple wireless devices are provisioned in response to pressing of that button.
Abstract:
A WiFi-enabled embedded device boots as a first access point. The WiFi-enabled embedded device communicates with a first wireless station to receive configuration parameters while continuing to operate as an access point. The WiFi-enabled embedded device then applies the configuration parameters internally to cause the WiFi-enabled embedded device to operate as a second wireless station. In an embodiment, the first wireless station discovers a configuration service advertized by the WiFi-enabled embedded device using mDN/DNS-SD, and automatically provides the configuration parameters to the WiFi-enabled embedded device. Convenient provisioning of the WiFi-enabled embedded device is thus made possible.
Abstract:
An access point communicates with a wireless station based on a point-to-point channel, to determine time instances of future communication to be received from the wireless station. In intervals between such future communications, the access point powers down at least some portions of a circuit contained within the access point for at least a partial duration between such future communications. In an embodiment, the powered-down portions include the receiver portions of the access point. The access point may be battery-powered, and the powering-down of the receiver portions enables reduction of power consumption in the access point.
Abstract:
A wireless station (A) is operated in a power-save mode, in which the station is alternately in power-ON and power-OFF states to reduce power consumption. Wireless station (A) computes at least some future time instances at which another wireless station (B) is expected to start transmitting control messages. Wireless station (A) is ensured to be in the power-ON state in corresponding time intervals encompassing durations of at least some of such future transmissions of control messages by wireless station (B), and is thereby enabled to receive the control messages. In an embodiment, the control messages correspond to group key message updates in which values of a decryption key are transmitted, wireless station (A) being a wireless client, wireless station (B) being an access point, with wireless stations (A) and (B) operating in a wireless network consistent with IEEE 802.11 specifications, and communication between wireless stations (A) and (B) being encrypted.