Abstract:
A system and method for reducing implementation complexity for estimation of a Carrier Frequency Offset (CFO) and a Symbol Timing Offset (STO) for an input signal for spectrally shaped multiple communication standards. The system is implemented by replacing multiplier with shifters. The system includes a CFO estimation block, a STO estimation block, and a band extraction block that extracts a lower band edge and an upper band edge of the input signal. The STO estimation block includes (i) a sample error generation block that computes a sampling timing error value, and (ii) a Phase Lock Loop block that estimates a frequency error and a phase error corresponding to the sampling timing error value. The CFO estimation block includes (i) a carrier offset error generation block that generates a carrier offset error value, and (ii) a leaky average block for performing a filter operation.
Abstract:
Methods and apparatus, including computer program products, implementing and using techniques for reducing the power consumption of a microprocessor. One or more signal transitions in an instruction set of a microprocessor are profiled. A probability of occurrence is assigned to each instruction in the instruction set. A binary operation code is assigned to each instruction, based on the probability of occurrence for the instruction. The instructions having the highest probability of occurrence are assigned operation codes that require fewer signal transitions. As a result, the power consumption of the microprocessor is reduced.
Abstract:
Methods and apparatus, including computer program products, implementing and using techniques for reducing the power consumption of a microprocessor. One or more signal transitions in an instruction set of a microprocessor are profiled. A probability of occurrence is assigned to each instruction in the instruction set. A binary operation code is assigned to each instruction, based on the probability of occurrence for the instruction. The instructions having the highest probability of occurrence are assigned operation codes that require fewer signal transitions. As a result, the power consumption of the microprocessor is reduced.
Abstract:
At a receiver incoming coded OFDM Symbol Data are passed through a Coarse Symbol Timing Synchronization module to determine the approximate start of the symbol. In one embodiment this is accomplished through correlation. The symbol is then passed through an FFT (2K or 8K, depending on the mode desired by the receiver). Since the Coarse Symbol Timing Synchronization module only determines an approximate start point of the symbol, a process of fine synchronization is used to adjust this approximate start point and determine a more accurate start point of the symbol. In this manner, the receiver is enabled to process COFDM symbols in DVB-T transmissions (where the symbols include a cyclic prefix to overcome echoes). One output of an FFT operation is magnitude. Magnitude is used for Channel Estimation (or Channel Correction). Another output of an FFT operation is phase discontinuity or rotations. Phase discontinuities are used in a fine synchronization process to determine the number of phase discontinuities. Phase discontinuity data of the symbol is passed through an N-Point FFT.
Abstract:
A system for validating a hardware platform is provided. The system includes a database that stores one or more test specifications, a compiler that generates a target image based on (i) a device driver obtained from a device driver generator, (ii) a platform independent target application code, (iii) a kernel source, and (iv) a run time environment, and a software driven validation generator that analyzes the run time specification and the device programming specification and generates (i) one or more test cases based on (a) the one or more test specifications, and (b) the device programming specification, and (ii) a control software based on the test cases. The test cases include configurations that are specific to the hardware platform. The hardware platform is validated based on (i) an execution of the target image and the control software on the hardware platform, and (ii) the one or more test cases.
Abstract:
A system for controlling an RF gain of a receiver that reduces a time taken to maintain an input signal level at an optimum dynamic range is provided. The system includes a tuner that receives a radio frequency (RF) signal and down-converts the RF signal to an intermediate frequency (IF) signal, and a demodulator. The tuner includes a radio frequency programmable gain amplifier (RF_VGA), a filter and an IF programmable gain amplifier (IF_VGA). The demodulator includes an analog to digital converter (ADC), and an Automatic Gain Control (AGC) unit that (i) receives a digital signal and an IF gain of the IF_VGA. The ADC samples a filtered IF signal under oversampling conditions to obtain an oversampled signal that includes an in-band signal and an out-of-band signal. The AGC unit (ii) controls the RF_VGA, the IF_VGA and (iii) measures an RF energy of the RF signal.
Abstract:
An Orthogonal Frequency Division Multiplexing (OFDM) receiver system for improved pilotless detection of symbol boundary of a received OFDM symbols using M-ary Phase Shift Keying (M-PSK) modulated carriers as a cost function. The OFDM receiver includes a symbol boundary detection block that detects a symbol boundary of the received OFDM symbols. The symbol boundary detection block detects the symbol boundary by computing a cost function of a second order moment of the M-PSK modulated carriers. The receiver system detects the symbol boundary for unknown information on the received OFDM symbols.
Abstract:
A system and method for reducing implementation complexity for estimation of a Carrier Frequency Offset (CFO) and a Symbol Timing Offset (STO) for an input signal for spectrally shaped multiple communication standards. The system is implemented by replacing multiplier with shifters. The system includes a CFO estimation block, a STO estimation block, and a band extraction block that extracts a lower band edge and an upper band edge of the input signal. The STO estimation block includes (i) a sample error generation block that computes a sampling timing error value, and (ii) a Phase Lock Loop block that estimates a frequency error and a phase error corresponding to the sampling timing error value. The CFO estimation block includes (i) a carrier offset error generation block that generates a carrier offset error value, and (ii) a leaky average block for performing a filter operation.
Abstract:
A Television (TV) receiver for faster channel switch times between a plurality of broadcasting TV channels with reduced latency in overall demodulation cycle for multiple demodulation standards is provided. The TV receiver includes a tuner that receives the broadcasting TV channels from a broadcasting system, performs a tuning operation, and sets a desired frequency for each of the broadcasting TV channels during a channel scan operation. A demodulator demodulates each of the broadcasting TV channels and acquires one or more acquisition channel parameters of each of the broadcasting TV channels during the channel scan operation. An application processor is coupled to the demodulator via a low throughput interface. The application processor performs a read operation and a write operation of the acquisition channel parameters to memory mapped registers on the demodulator when a channel status switches from a first state to a second state.
Abstract:
A system for controlling an RF gain of a receiver that reduces a time taken to maintain an input signal level at an optimum dynamic range is provided. The system includes a tuner that receives a radio frequency (RF) signal and down-converts the RF signal to an intermediate frequency (IF) signal, and a demodulator. The tuner includes a radio frequency programmable gain amplifier (RF_VGA), a filter and an IF programmable gain amplifier (IF_VGA). The demodulator includes an analog to digital converter (ADC), and an Automatic Gain Control (AGC) unit that (i) receives a digital signal and an IF gain of the IF_VGA. The ADC samples a filtered IF signal under oversampling conditions to obtain an oversampled signal that includes an in-band signal and an out-of-band signal. The AGC unit (ii) controls the RF_VGA, the IF_VGA and (iii) measures an RF energy of the RF signal.