Abstract:
Various embodiments of the present disclosure provide a system, device, apparatus, and method for detecting and registering contact made with a surface, by both conductive and non-conductive implements. The present disclosure comprises a first conductive layer comprising a plurality of first conductors, a second conductive layer comprising a plurality of second conductors and a plurality of third conductors, orientated substantially coplanar to the first conductive layer; and a dielectric layer disposed between the first conductive layer and the second conductive layer, the dielectric layer comprising a plurality of vias; each of the plurality of first conductors are arranged in a first pattern, each of the plurality of second conductors are arranged in a second pattern, the second pattern correlating to the space between each of the plurality of first conductors, and each of the plurality of the third conductors are substantially shaped and orientated in the first pattern.
Abstract:
A method for processing images in an imaging device includes the steps of using real time scalar software (RTSS) for: receiving scalar input data (SID) from video preview application software (VPAS) within a host computer; and performing scaling and cropping operations within the imaging device on raw image frame data to create a scaled down frame (SDF) within the imaging device. As a result, images of high resolution can be transmitted efficiently with significantly reduced amounts of data over the data links, and achieve a high number of frames per second.
Abstract:
An interactive flat panel display is provided with an integrated document camera, embedded computer, and additional touch screen panel in one complete system that facilitates an engaging, interactive and collaborative learning experience. The embedded computer and/or document camera provides content to the flat panel display and the additional touch screen display thereby allowing the user to interact with programs, computer applications, websites, etc. through the touch screen capabilities of the displays.
Abstract:
A digital notepad is disclosed that includes an onboard computer, a base having retainers, a writing instrument having a tip that is configured to deliver ink, a plurality of sheets of paper, and a plurality of touch sensors communicatively connected to the onboard computer. The onboard computer includes one or more computer processors and a program loaded thereon configured to read information from at least one of the plurality of touch sensors. At least one of the touch sensors of the plurality of touch sensors may be integrated into the base. At least one of the plurality of sheets of paper may be retained on the base and in close proximity to the at least one of the touch sensors. The digital notepad may further include a display screen communicatively connected to the onboard computer and configured to display markings read by at least one of the plurality of touch sensors. In another embodiment, the digital notepad's writing instrument includes thermally reactive ink. In another embodiment, the digital notepad includes an eraser movably and detachably connected to the base. The eraser may include a thermal unit that is configured to change the temperature of the thermally reactive ink on at least one of the plurality of sheets of paper, such that a reaction is induced.
Abstract:
An improved digital teaching station, a stand, and a platform that supports a central multitouch flat-panel display screen is provided. A reflective glass mirror is affixed on top of the stand, and a computing device is connected. Moreover, a document camera is attached to a side tray. Furthermore, hardware and software enables a separate video stream to create always upright content from an upward facing electronic display screen and to interconnect with all devices and data types.
Abstract:
Disclosed is a method of acquiring an image of a target to provide an output video image that has a plurality of frame images. The method includes the steps of receiving a series of frame images from a video camera, using a processor to manipulate the series of frame images from a video camera, using a processor to manipulate the series of frame images, which includes determining a reference resolution for providing output frame images, and displaying and/or storing the manipulated series of frame images as the output video image without changing a resolution of the output frame images. Also disclosed is a document imaging apparatus that includes a digital imaging unit. The digital imaging unit contains optics that having an infinite focal length. The document imaging apparatus also includes a processor that is coupled to the digital imaging unit and that is configured to cause the digital imaging unit to zoom in or zoom out in real-time while maintaining a resolution value of stored images constant. A non-transitory storage medium stores images obtained from the digital imaging unit and a display displays the stored images. A folding suspension arm supports the digital imaging unit at a distance from a target to be imaged.
Abstract:
A method for processing images in an imaging device includes the steps of using real time scalar software (RTSS) for: receiving scalar input data (SID) from video preview application software (VPAS) within a host computer; and performing scaling and cropping operations within the imaging device on raw image frame data to create a scaled down frame (SDF) within the imaging device. As a result, images of high resolution can be transmitted efficiently with significantly reduced amounts of data over the data links, and achieve a high number of frames per second.