摘要:
Embodiments of the present invention provide a stair layout template that reduces the opportunity for errors when constructing a set of stairs. Embodiments also provide a method for using the template to construct a set of stairs. The template indicates to the builder where a particular set of marks are to be made on the insides (the sides where the tread modules are attached) of both stringers. These marks include the cut marks for the bottom and top ends of the stringers and the “screw set points” that indicate where the tread modules will be attached to the stringers. The template is reversible, with the mirrored markings on both sides, so that the process for one stringer is the mirror image of the other stringer.
摘要:
An optical sensor formed from an optical waveguide having at least one core surrounded by a cladding and a large diameter generally D-shaped portion is disclosed. Axial or compressive strain across the D-shaped cross section may be determined by measuring the change in polarization or birefringence of the light output from the sensor. A layer responsive to a parameter may be disposed on a flat portion of the D-shaped portion of the sensor. The refractive index of the layer changes and/or the layer applies a strain on the sensor in response to the parameter. Changes in the refractive index of the layer alters the light output from the sensor, which is measured over time and correlated to the parameter.
摘要:
Methods to fabricate an optical preform for draw into Polarization Maintaining (PM) or Polarizing (PZ) optical fiber are provided. The methods involve assembly of pre-shaped and pieced together bulk glass elements into preforms (“assembled preforms”) for simultaneous fusing and drawing into optical fiber. These preforms form a stress-induced birefringent optical core when drawn to fiber.
摘要:
A large diameter optical waveguide, grating, and laser includes a waveguide having at least one core surrounded by a cladding, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension of said waveguide being greater than about 0.3 mm. At least one Bragg grating may be impressed in the waveguide. The waveguide may be axially compressed which causes the length of the waveguide to decrease without buckling. The waveguide may be used for any application where a waveguide needs to be compression tuned. Also, the waveguide exhibits lower mode coupling from the core to the cladding and allows for higher optical power to be used when writing gratings without damaging the waveguide. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
摘要:
A large diameter optical waveguide, grating, and laser includes a waveguide having at least one core surrounded by a cladding, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension of said waveguide being greater than about 0.3 mm. At least one Bragg grating may be impressed in the waveguide. The waveguide may be axially compressed which causes the length of the waveguide to decrease without buckling. The waveguide may be used for any application where a waveguide needs to be compression tuned. Also, the waveguide exhibits lower mode coupling from the core to the cladding and allows for higher optical power to be used when writing gratings without damaging the waveguide. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
摘要:
A Fabry-Perot optical device, including: a large-diameter elongated optical waveguide having a core and having an air gap region disposed along the longitudinal axis of the waveguide, and with the air gap region enclosed by end faces substantially perpendicular to the longitudinal axis of the waveguide, the waveguide also having a cavity delimited on at least one side by an endface of the air gap, wherein the endface is at least partially reflective. From another perspective, the invention provides an apparatus including: a force-applying assembly, responsive to a control signal containing information about a selected resonated wavelength or a selected filtered wavelength derived from an optical signal, for providing a force; and a Fabry-Perot optical structure, responsive to the force, and further responsive to the optical signal, for providing a Fabry-Perot optical structure signal either with the selected resonated wavelength or without the selected filtered wavelength.
摘要:
A process for adapting a length of optical fiber with a pure silica core to enable imprinting a Bragg grating in the core without doping the core, the process using an optical fiber having some fluorine in its cladding, and besides the process, a pure silica core optical fiber having a Bragg grating. The process causes fluorine to diffuse from the cladding into the core for a selected length, and then by one of several alternative methods, creates defects in the core within the length. The alternatives include heating and reducing or oxidizing the length; performing flame brushing; or irradiating the length using ionizing radiation, such as gamma radiation. Next, the process uses hydrogenation to load the core with hydrogen, and then exposes the length to a pattern of UV light as is normally done in imprinting a Bragg grating. Finally, the process heats the length, causing hydrogen fluoride to form in the regions exposed to appreciable UV light. Since the hydrogen fluoride is volatile, it boils out of the optical fiber while the optical fiber is being heated. What remains is a length having a variation in concentration of fluorine, which is an index lowering agent, according to the pattern of UV light to which the length was exposed, or, in other words, a chemical (Bragg) grating.
摘要:
A compression-tuned bragg grating includes a tunable optical element 20,600 which includes either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20 or a large diameter waveguide grating 600 having a core and a wide cladding. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength &lgr;1. The tunable element 20,600 is axially compressed which causes a shift in the reflection wavelength of the grating 12 without buckling the element. The shape of the element may be other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. At least a portion of the element may be doped between a pair of gratings 150,152, to form a compression-tuned laser or the grating 12 orgratings 150,152 may be constructed as a tunable DFB laser. Also, the element 20 may have an inner tapered region 22 or tapered (or fluted) sections 27. The compression may be done by a PZT, stepper motor or other actuator or fluid pressure.
摘要:
Methods and apparatus relate to optical fibers suitable for use in sensing applications exposed to radiation environments. The fibers include a core of pure silica or chlorine doped silica surrounded by a fluorinated silica cladding. These glasses for the core and cladding utilize dopants that resist radiation-induced attenuation. A two step process for forming the cladding can achieve necessary concentrations of the fluorine by performing a soot deposition process in a different environment from a consolidation process where the soot is sintered into a glass. Concentration of fluorine doped into the cladding layer enables obtaining a numerical aperture that confines a mono-mode of the fiber to resist bend-induced attenuation. Dimensions of the fiber further facilitate bending ability of the fiber.
摘要:
Methods to fabricate an optical preform for draw into Polarization Maintaining (PM) or Polarizing (PZ) optical fiber are provided. The methods involve assembly of pre-shaped and pieced together bulk glass elements into preforms (“assembled preforms”) for simultaneous fusing and drawing into optical fiber. These preforms form a stress-induced birefringent optical core when drawn to fiber.