Abstract:
A power-saving sensing module includes a light source, first and second sensors, first and second detection units, and a controller. The first sensor detects a first image corresponding to a working plane in response to at least a part of the light ray from the light source to generate a first sensing signal. The first detection unit generates a displacement signal in response to the first sensing signal. The second sensor detects a second image corresponding to an object in response to at least a part of light ray to generate a second sensing signal. The second detection unit generates a touch signal corresponding to the object in response to the second sensing signal. The controller outputs a control signal in response to the touch signal. The first detection unit operates at a dormant state or a sensing state in response to the control signal.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
An electronic apparatus includes a circuit system, a camera sensing circuit, and an object sensing circuit. The circuit system is utilized for controlling an operation of the electronic apparatus. The camera sensing circuit is coupled to the circuit system and utilized for sensing at least a portion of a portrait of a user. The object sensing circuit is coupled to the circuit system and utilized for sensing whether any object(s) is/are near to the electronic apparatus. The operation of the object sensing circuit is different from the operation of the camera sensing circuit. The camera sensing circuit is used for determining whether to notify the circuit system to switch from a first operation mode to a second operation mode. The object sensing circuit is used for determining whether to notify the circuit system to switch from the second operation mode to the first operation mode.
Abstract:
A controlling method for an electronic apparatus is disclosed. The method comprises: detecting a location for vision of an eye on a display of the electronic apparatus; controlling the electronic apparatus to operate in a first mode if a time period for the vision stops on an objective on the display is not larger than a predetermined time period; and controlling the electronic apparatus to operate in a second mode if the time period for the vision stops on an objective on the display is larger than the predetermined time period. The electronic apparatus detects at least turning operation for a head comprising the eye and performs corresponding operation according to the turning operation in the second mode.
Abstract:
A portable interactive electronic apparatus includes a shell and a touch control panel having a cover plate. The cover plate includes a first surface area and a second surface area, and the touch control panel is positioned on the shell. The first surface area is utilized for sensing a touch of a user's finger, and the second surface area is utilized for leading liquid components out from the cover plate.
Abstract:
An image detecting method, comprising: controlling a synchronizing controller to transmit a first activating signal to a light source controller; controlling the light source controller to control at least one light source to generate a predetermined radiating pattern, and controlling the light source controller to transmit back a first responding signal to the synchronizing controller when the light source controller receives the first activating signal; and controlling an image sensor to start an image detecting when the synchronizing controller receives the first responding signal.
Abstract:
Disclosed are a distance measuring method and a distance measuring apparatus. During the distance measuring, an image is obtained. If the location of a center of gravity of the image is within a first segment, the calculating unit calculates a distance between the object and the distance measuring apparatus corresponding to the projection point, according to a first mapping relationship and the location of a center of gravity of the image. If the location of a center of gravity of the image is within a second segment, the calculating unit calculates a distance between the object and the distance measuring apparatus corresponding to the projection point according to a second mapping relationship and the location of a center of gravity of the image.
Abstract:
An operation method of an optical touch device includes: emitting, by a light emitting unit, a light beam to illuminate an object; capturing, by an image sensing device, an image of the object reflecting the light beam; selecting all pixels in the image having a brightness greater than or equal to a brightness threshold; sorting the selected pixels along a first coordinate axis of the image, a second coordinate axis of the image or based a pixel brightness; selecting the top first predetermined ratio of pixels from the sorted pixels as an object image of the object; and calculating a gravity center of the object image according to positions of the top first predetermined ratio of pixels or according to the positions of the top first predetermined ratio of pixels with a weight of pixel brightness. An optical touch device is also provided.
Abstract:
An interactive system includes a display, a processor and a remote controller. The display includes at least one reference beacon for providing light with a predetermined feature. The remote controller includes an image sensor configured to capture an image containing the reference beacon and calculates an aiming coordinate according to an imaging position of the reference beacon in the captured image. The processor calculates a scale ratio of a pixel size of the display with respect to that of the image captured by the image sensor and moves a cursor position according to the scale ratio and the aiming coordinate.
Abstract:
An image detecting method, comprising: controlling a synchronizing controller to transmit a first activating signal to a light source controller; controlling the light source controller to control at least one light source to generate a predetermined radiating pattern, and controlling the light source controller to transmit back a first responding signal to the synchronizing controller when the light source controller receives the first activating signal; and controlling an image sensor to start an image detecting when the synchronizing controller receives the first responding signal.