Abstract:
Methods, systems, and devices are described for wireless communication. An access point (AP) may determine a single user bias for a wireless device based on a feedback signal-to-noise ratio (SNR) and an SNR based on a modulation and coding scheme (MCS). The AP may also determine a multi-user SNR for the wireless device based on the feedback SNR, the single user bias, a multi user loss, and a group bias. The AP may then select an updated MCS based on the multi-user SNR. In some cases, the AP may transmit a reference signal to the wireless device and receive a compressed beamforming feedback report from the wireless device based on the reference signal. The feedback SNR may be based on the compressed beamforming feedback report. The AP may also maintain a blacklist of groups with channel correlation that satisfies a threshold, and refrain from scheduling those groups together.
Abstract:
Methods and apparatuses for communicating over a wireless communication network are disclosed herein. One method includes forming a message that includes a plurality of data tones and one or more direct current (DC) protection tones. The method further includes setting a value for a data tone of the plurality of data tones to carry a data portion of the message. The method further includes setting a value for a DC protection tone of the one or more DC protection tones by repeating the value for the data tone as the value for the DC protection tone. The method further includes transmitting the message to one or more wireless communication devices utilizing the plurality of data tones and the one or more DC protection tones.
Abstract:
Round trip time (RTT) measurements may be obtained from downlink (DL) trigger frame and uplink (UL) Multiple-Input Multiple-Output (MIMO) frame transactions, which can replace and/or complement separate RTT measurements. By implementing such techniques, wireless systems can make access to RTT measurements, and consequently, location determination of access points (APs) within the system, more easily accessible to navigation and/or other applications benefitting from such measurements and determinations.
Abstract:
Techniques and apparatus for controlling the transmit power of an uplink (UL) signal from a user terminal in a wireless communications system in an effort to achieve some target characteristic, such as a target carrier-to-interference (C/I) ratio, at an access point (AP) are provided. In this manner, such a user terminal may help avoid or compensate for imbalances in received radio frequency (RF) power between UL signals received from multiple user terminals by the AP. For example, the transmit power at each user terminal may be controlled in an effort to achieve a target post-processing C/I ratio of 28 dB per spatial stream in an effort to reduce large power imbalances and optimize throughput per user terminal. The user terminal and the AP may compose part of a multiple-input multiple-output (MIMO) communication system utilizing spatial-division multiple access (SDMA) techniques.
Abstract:
A communication device for allocating tones is described that includes a processor and instructions in memory in electronic communication with the processor. The communication device determines whether a bandwidth for signal transmission is 20, 40, 80 or 160 megahertz (MHz). The communication device respectively allocates tones for 20, 40, 80 or 160 MHz as follows: for a very high throughput (VHT) signal A1 (VHT-SIG-A1): 52, 104, 208, 416; a VHT signal A2 (VHT-SIG-A2): 52, 104, 208, 416; a VHT short training field (VHT-STF): 12, 24, 48, 48; one or more VHT long training field(s) (VHT-LTF(s)): 56, 114, 242, 484; a VHT signal B (VHT-SIG-B): 56, 114, 242, 484; and a data field (DATA): 56, 114, 242, 484. The communication device also transmits the signal.
Abstract:
Techniques and apparatus for controlling the transmit power of an uplink (UL) signal from a user terminal in a wireless communications system in an effort to achieve some target characteristic, such as a target carrier-to-interference (C/I) ratio, at an access point (AP) are provided. In this manner, such a user terminal may help avoid or compensate for imbalances in received radio frequency (RF) power between UL signals received from multiple user terminals by the AP. For example, the transmit power at each user terminal may be controlled in an effort to achieve a target post-processing C/I ratio of 28 dB per spatial stream in an effort to reduce large power imbalances and optimize throughput per user terminal. The user terminal and the AP may compose part of a multiple-input multiple-output (MIMO) communication system utilizing spatial-division multiple access (SDMA) techniques.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a first wireless device, compressed beamforming information from each of a plurality of stations, the compressed beamforming information including a feedback signal-to-noise ratio (SNR) value and compressed feedback matrix. The method also includes determining a multi-user signal-to-interference-plus noise ratio (SINR) metric for each of the plurality of stations based at least in part on the received feedback SNR values and the received compressed feedback matrices.