Abstract:
The disclosure is related to group communications over multimedia broadcast/multicast services (MBMS). An aspect determines whether a number of one or more user devices in an MBMS coverage area participating in a group call is less than a threshold, and delivers a media stream for the group call to a user device of the one or more user devices over a wireless local area network (WLAN) to which the user device is connected based on the number of the one or more user devices in the MBMS coverage area being less than the threshold.
Abstract:
The disclosure generally relates to techniques that may be used to coordinate an evolved multimedia broadcast/multicast services (eMBMS) geo-location based group call. More particularly, an eMBMS bearer may be established to support a group call based on a mapping among eMBMS network components that service a geographic area selected by an originator associated with the group call (e.g., an area that the call originator defines according to latitude and longitude coordinates, a selected region on a map that displays available group members in the selected region, network identifications, etc.). The group call may then be initiated over the established eMBMS bearer using network group identifiers associated with the call originator and one or more group members present in the selected geographic area and unicast service with a dedicated link to group members located outside the selected geographic area may be established to include such group members in the group call.
Abstract:
In an embodiment, an apparatus (e.g., a client device, an eNodeB, MME, S-GW, P-GW, UTRAN component, etc.) detects a first transition of a client device from an active state to an idle state while the client device is allocated a Quality of Service (QoS) link by a serving network. The apparatus caches QoS information associated with the QoS link, and releases the QoS link in response to the detection of the first transition. The apparatus later detects, after the caching and releasing, a second transition of the client device from the idle state back to the active state. The apparatus re-establishes the QoS link in response to the detection of the second transition using the cached QoS information.
Abstract:
In an embodiment, an apparatus monitors traffic usage in uplink and downlink directions of a link that is configured to support a communication session for the client device. The apparatus can correspond to a core network component or to an access network component. The apparatus initiates, in association with the communication session, (i) an uplink-specific QoS adjustment to a first level of QoS assigned to the uplink direction of the link based on the monitored traffic usage in the uplink direction, and/or (ii) a downlink-specific QoS adjustment to a second level of QoS assigned to the downlink direction of the link based on the monitored traffic usage in the downlink direction. The link is maintained in both the downlink and uplink directions throughout the communication session irrespective of any QoS adjustments in the uplink and/or downlink directions of the link that occur during the communication session.
Abstract:
The disclosure relates to optimistic QoS setup. A network element receives an IP packet that is not associated with a QoS request on a bearer for an application/service executing on a target client device, and initiates QoS activation for the target client device based on a combination of an application-specific identifier from the target client device and a user-specific identifier of the application/service. A server receives a session setup request that is not associated with a QoS request for an application/service executing on a target client device, the session setup request identifying one or more client devices to participate in a session, and initiates QoS activation for at least one of the client devices, before a session announcement is transmitted to the client devices, based on a combination of an application-specific identifier from the target client device and a user-specific identifier of the application/service.
Abstract:
The disclosure generally relates to network-initiated and client-initiated mechanisms to enable quality of service (QoS) for web-based client applications that may high efficiency, high performance, or otherwise guaranteed service levels. For example, to enable QoS for calls or other sessions associated a web-based application, one or more signaling messages may be exchanged between a server and a first user equipment (UE) to establish a call between the first UE and a second UE and to establish a peer connection between the server and at least the first UE. As such, QoS may be activated for at least the peer connection between the first UE and the server, wherein the server may route data associated with the web-based application between the first UE and the second UE over the established peer connection to implement the activated QoS.
Abstract:
The disclosure is related to dynamically applying quality of service (QoS) to a call. An aspect determines a packet transmission state of a subscriber on the call, determines whether or not the QoS is allocated to the subscriber, and allocates the QoS to the subscriber based on the QoS not being allocated to the subscriber and the packet transmission state indicating that the subscriber is sending packets.
Abstract:
Aspects relating to reducing network latency in systems that use NAS Authentication/Security procedures are disclosed. For example, a method for reducing latency due to NAS authentication can include determining a number (n) or time (t) of service requests from an idle state that trigger a NAS authentication. A penultimate service request is detected before the nth service request or after time (t). A gratuitous service request is sent after the penultimate service request.
Abstract:
The disclosure relates to dynamically controlling group priority access to a wireless network for a plurality of subscriber devices. An aspect transmits, on a broadcast/multicast interface, a priority group list indicating a priority state of at least one communications group of subscriber devices, wherein a subscriber device is barred from performing channel access procedures when at least one group identifier of the priority group list does not match at least one group identifier of a list of group identifiers of the subscriber device. An aspect receives, on a broadcast/multicast interface, a priority group list indicating a priority state of at least one communications group of subscriber devices, and bars channel access procedures when at least one group identifier of the priority group list does not match at least one group identifier of a list of group identifiers of the subscriber device.
Abstract:
In an embodiment, an apparatus predicts traffic usage in uplink and downlink directions of a link that is configured to support a communication session for the client device. In an example, the predictions can be based upon a call state parameter (e.g., if the client device is a non-floorholder or is muted the client device is unlikely to send much traffic in the uplink direction, etc.). The apparatus initiates, in association with the communication session, (i) an uplink-specific QoS adjustment to a first level of Quality of Service (QoS) assigned to the uplink direction of the link based on the predicted traffic usage in the uplink direction, and/or (ii) a downlink-specific QoS adjustment to a second level of QoS assigned to the downlink direction of the link based on the predicted traffic usage in the downlink direction. The apparatus can correspond to the client device or alternatively to a server.