Abstract:
Methods and apparatus for processing positioning assistance data are provided. An exemplary method includes receiving, from a positioning server, virtual access point (VAP) data including a list of unique identifiers, and determining a location of a mobile device by using the VAP. The VAP data indicates that the unique identifiers included on the list identify signals originating from the same physical access point. The unique identifiers can be MAC addresses. In an example, the location determining the can include actively scanning a signal identified by a unique identifier on the list and not actively scanning a different signal identified by a different unique identifier also on the list. Not scanning the other MAC addresses that are on the access point's list and assigned to the mobile device keeps the mobile device from performing duplicative scanning that wastes time, processor cycles, and energy.
Abstract:
Disclosed are systems, apparatus, devices, methods, media, products, and other implementations, including a method that includes controllably modifying, at a first wireless device, an original unmodified value of at least one PHY-layer signal parameter, such as amplitude, frequency, timestamp, gain, signal equalization, and/or any combination thereof, of a signal according to at least one pre-determined varying signal modification process. The method further includes transmitting to a second wireless device the signal with the controllably modified value of the at least one PHY-layer signal parameter, with the transmitted signal configured to facilitate position determination of the second wireless device when the original unmodified value of the at least one PHY-layer signal parameter is determined at the second wireless device from the controllably modified value of the at least one PHY-layer signal parameter.
Abstract:
Disclosed are systems, apparatus, devices, methods, computer program products, and other implementations, including a method of controlling navigation tasks on a mobile device that includes obtaining data representative of a route of travel for the mobile device, obtaining a list of navigation tasks associated with the route of travel for the mobile device, and performing one or more navigation tasks in accordance with the list of navigation tasks based, at least in part, on proximity of the mobile device to one or more points on the route of travel. Performing the one or more navigation tasks includes one or more of, for example, obtaining satellite positioning assistance data in response to a determination that the mobile device is transitioning from an indoor area to an outdoor area, and/or establishing a communication link with an access point.
Abstract:
Determining a position of a device using a signal received from a reference emitter includes: receiving the signal; determining a state of a first filter, the state of the first filter including a first carrier phase ambiguity estimate that includes a floating value; determining a state of a second filter, the state of the second filter including a second carrier phase ambiguity estimate that includes a fixed value; determining whether the state of the second filter is consistent with one other filter state or measurement; maintaining the state of the second filter in response to the device determining that the state of the second filter is consistent with the other filter state; changing the state of the second filter to the state of the first filter in response to the device determining that the state of the second filter is not consistent with the other filter state.
Abstract:
A method for aligning visual-inertial odometry (VIO) and satellite positioning system (SPS) reference frames includes obtaining a plurality of range-rate measurements of a mobile platform from an SPS. The range-rate measurements are with respect to a global reference frame of the SPS. The method also includes obtaining a plurality of VIO velocity measurements of the mobile platform from a VIO system. The VIO velocity measurements are with respect to a local reference frame of the VIO system. At least one orientation parameter is then determined to align the local reference frame with the global reference frame based on the range-rate measurements and the VIO velocity measurements.
Abstract:
Disclosed are implementations that include a method, performed by a network control device, including sending a first instruction to a first device to send a first measurement signal, and sending a second instruction to a second device to receive the first measurement signal. Following receipt of a first acknowledgement signal from the target mobile device, the first and second devices change their roles so the second device sends, and the first device receives, a second measurement signal, and the first and second devices receive a second acknowledgement signal from the target device. Position of the target device is determined based on timing measurements associated with the first and second measurement signals, the first and second acknowledgement signals, and on known positions of the first and second devices. Another network device is selected to perform additional measurements upon a determination that a desired accuracy of the position determined was not achieved.
Abstract:
Disclosed are systems, apparatus, devices, methods, media, products, and other implementations, including a method that includes determining, at a first wireless device comprising multiple transmit antennas, at least one signal transmission characteristic according to at least one pre-determined varying transmission characteristic determination process. The at least one transmission characteristic includes, for example, a transmit antenna selected from the multiple transmit antennas, a beam characteristic, a cyclic delay diversity parameter, and/or any combination thereof. The method also includes transmitting from the first wireless device to a second wireless device a signal using the at least one signal transmission characteristic determined according to the at least one pre-determined varying transmission characteristic determination process. The transmitted signal is configured to facilitate position determination of the second wireless device upon deriving at the second wireless device a reconstructed value of the at least one signal transmission characteristic determined at the first wireless device.
Abstract:
Techniques for determining whether a mobile device crosses a boundary defined by a first wireless access point (WAP) and a second fixed-location WAP are provided. A method according to these techniques includes receiving, at a mobile device, information defining a boundary defined by first and second fixed-location WAPs, the boundary being defined at least in part based on a ratio of a round trip time (RTT) between the mobile device and the first fixed-location WAP to a ratio of a RTT between the mobile device and the second fixed-location WAP, determining the ratio of the RTT between the mobile device and the first fixed-location WAP to a ratio of the RTT between the mobile device and the second fixed-location WAP, determining whether the mobile device has crossed the boundary, and triggering an event in response to the mobile device crossing the boundary.