Abstract:
The various embodiments include methods and apparatuses for canceling nonlinear interference during concurrent communication of multi-technology wireless communication devices. Nonlinear interference may be estimated using a multi-layer perceptron neural network with Hammerstein structure by dividing an aggressor signal into real and imaginary components, augmenting the components by weight factors, executing a linear combination of the augmented components, and executing a nonlinear sigmoid function for the combined components at a hidden layer of multi-layer perceptron neural network to produce a hidden layer output signal. At an output layer, hidden layer output signals may be augmented by weight factors, and the augmented hidden layer output signals may be linearly combined to produce real and imaginary components of an estimated jammer signal. A linear filter function may be executed for the components of the jammer signal, and to produce a nonlinear interference estimate used to cancel the nonlinear interference of a victim signal.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may transmit, in a first part of two-part channel state information (CSI), a rank indication (RI) and an indication of one or more numbers of first transfer domain coefficients to be used to characterize compressed CSI for one or more layers; and transmit, in a second part of the two-part CSI, an indication of one or more numbers of second transfer domain coefficients to be used to characterize compressed CSI for one or more beams for the one or more layers. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine that an enhanced type-II channel state information (CSI) report configuration, associated with transmitting CSI feedback to a base station, is to be overridden; and transmit, based at least in part on determining that the enhanced type-II CSI report configuration is to be overridden, a CSI report using another CSI report configuration, wherein the CSI report includes the CSI feedback and an indication that the enhanced type-II CSI report configuration has been overridden. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, via a first component carrier, control information that triggers transmission of an aperiodic reference signal in a second component carrier. The UE may identify a quasi co-location (QCL) assumption for reception of the aperiodic reference signal in the second component carrier based at least in part on a control resource set not being configured for the second component carrier. The UE may then monitor for the aperiodic reference signal of the second component carrier based on the QCL assumption. In some cases, the UE may transmit a measurement report to a base station based on a measurement of the reference signal.
Abstract:
Methods, systems, and devices for wireless communications are described. The described techniques provide for dynamic updates to beam failure detection (BFD) reference signals (RSs) and path loss RS using medium access control-control element (MAC-CE) or downlink control information (DCI). For example, the quasi co-location (QCL) of periodic CSI-RS may be dynamically updated by the MAC-CE or DCI when the periodic CSI-RS is for BFD RS. Also, a semi-persistent CSI-RS or aperiodic CSI-RS may act as a BFD RS. An enhanced update procedure may be used to update the path loss RS dynamically using MAC-CE or DCI. In some cases, the path loss RS parameters updated via MAC-CE or DCI may overwrite the previously RRC configured path loss RS parameters. In another example, if the path loss RS is not configured, then the path loss RS by default may be the spatial relation reference signal of the corresponding uplink beam.
Abstract:
Apparatus, methods, and computer-readable media for facilitating dual stage CSI selection for CSI feedback are disclosed herein. An example method of wireless communication at a UE includes, after detecting a CSI report triggering event, selecting a subset of CSI-RS resources from a set of CSI-RS resources configured for the UE by applying at least one of an RSRP threshold or an SINR threshold to each CSI-RS resource of the set of CSI-RS resources. The example method also includes selecting a CSI-RS resource from the subset of CSI-RS resources based on an efficiency metric associated with each of the CSI-RS resources of the subset of CSI-RS resources. The example method also includes transmitting a CSI report to a base station, the CSI report including a CQI associated with the selected CSI-RS and at least one of a PMI, an RI, or a wideband component of the PMI.
Abstract:
Methods, systems, and devices for wireless communications are described that identify a minimum gap between a control channel transmission on a first component carrier (CC) that triggers a measurement report and an associated reference signal transmission on a second CC. The minimum gap may be based on a resource associated with a control channel transmission and a resource associated with the reference signal transmission. The first CC and the second CC have different numerologies and the minimum gap may be identified in terms of a number of OFDM symbols of the second CC that carries the reference signal transmission. The minimum gap also may be identified based on a location of the control channel transmission within a slot of the first CC. In cases where beam switching is used, the minimum gap may be further based at least in part on a beam switch time for performing the beam switching.
Abstract:
Wireless devices are adapted to facilitate beamforming communications in wireless networks. A wireless device may identify a first beam group with a number of beams equal to a maximum number of allowed beams, and a second beam group with a number of beams less than the maximum number of allowed beams. Channel statistics may be estimated for each of the first beam group and the second beam group, and the second beam group may be selected for communications when the second beam group is determined to have at least substantially equal or greater channel statistics compared to the first beam group. Other aspects, embodiments, and features are also included.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may perform a digital simulation to determine a precoding matrix indicator (PMI) associated with a digital reception beam. A base station may send, to the UE, a reference signal. The UE may perform a coarse beam search on the reference signal using non-oversampled digital reception beams. The UE may measure the signal strength of the reference signal for each of the non-oversampled digital reception beams and select the non-oversampled digital reception beam with the strongest signal. The UE may perform a refined beam search procedure on the selected beam by using a set of oversampled digital reception beams which correspond to the selected non-oversampled digital reception beam. The UE may determine the PMI associated with the strongest oversampled digital reception beam and send the PMI in a report to the base station.
Abstract:
Apparatus, methods, and computer-readable media for adaptive hybrid precoder selection in 2D antenna configurations are disclosed herein. An example method of wireless communication at a UE includes estimating a channel based on CSI-RS received on each port of a plurality of CSI-RS ports from a base station. The example method includes determining, based on the channel estimation, whether to perform disjoint PMI processing or joint PMI processing when determining a first component of a PMI. The example, method includes determining the first component of the PMI based on the determined disjoint PMI processing or joint PMI processing.