Abstract:
Aspects of the present disclosure may compensate for cyclic shift delays (CSD) in transmitted signals when estimating angle of arrival information of a wireless signal transmitted by a transmitting device. In some aspects, a receiving device may determine a presence of CSD in the wireless signal, and estimate an angle of arrival of the wireless signal based at least in part on the presence of CSD. For example, the receiving device may determine a first tap of the wireless channel based at least in part on the CSD. The receiving device may then determine a phase difference of the wireless signal between a plurality of antennas of the receiving device based on the first tap of the wireless channel. The receiving device may estimate the angle of arrival of the wireless signal based on the phase difference.
Abstract:
Aspects of the present disclosure may compensate for movements of a transmitting device when estimating angular information of wireless signals transmitted by the transmitting device. In some aspects, a receiving device may detect a movement of the transmitting device, and determine the angular information of the wireless signals based at least in part on the movement of the transmitting device. The wireless signals may include a first signal received at a first time and a second signal received at a second time, and the angular information may be determined based on the movement of the transmitting device from the first time to the second time. For example, the receiving device may determine the angular information based on the first signal, and may adjust the angular information based on the second signal if the movement of the transmitting device exceeds a threshold distance.
Abstract:
Methods, systems, and devices are described for wireless communication at a wireless device. A wireless device (e.g., station or access point) may adapt short inter-frame space (SIFS) burst parameters to improve the performance of the overall network while providing enriched user experience. A wireless device may monitor traffic conditions on the network and dynamically adapt the SIFS burst parameters associated with one or more stations based at least in part on detected variations on the traffic channel. In other examples, the wireless device may allocate a common SIFS burst parameter to be used by a plurality of wireless devices in the basic service set (BSS).
Abstract:
Certain aspects of the present disclosure relate to a methods and apparatus for wireless communication. In one aspect, a method for communication over a wireless medium includes transmitting, from a first wireless device, a first communication reserving access to the wireless medium during a first time period. The method further includes transmitting a second communication selectively allowing one or more wireless devices to access the wireless medium, regardless of a reservation specified by the first communication, during a second time period. The method further includes transmitting, after the second time period, a third communication reserving access to the wireless medium during a third time period.
Abstract:
Certain aspects of the present disclosure relate to a methods and apparatus for wireless communication. In one aspect, a method of wireless communication comprises transmitting, from a LTE-U device, a first wireless local area network (WLAN) packet that reserves a communication medium over a time period, the WLAN communication including information about a LTE-U communication. The method further comprises transmitting the LTE-U communication during the reserved time period.
Abstract:
Methods, apparatus, and computer-readable media for wireless communication may involve techniques for throughput estimation. An expected air time parameter may be used as a parameter for estimating throughput. The expected air time parameter may be indicative of an estimated air time fraction obtainable for communications using an access point (AP), for example, between a wireless station (STA) and the AP. Either the expected air time parameter or an estimated air time fraction determined (e.g., calculated) from the expected air time parameter may be transmitted from the AP to the STA (or other communication device) to allow the STA (or other communication device) to determine an estimated throughput for communications using the AP.
Abstract:
Rate limiting operations can be implemented at an ingress DMA unit to minimize the probability of dropped packets because of differences between the communication rates of the ingress DMA unit and a packet processing engine. The communication rate associated with each of the software ports of a communication device can be determined and an aggregate software port ingress rate can be calculated by summing the communication rate associated with each of the software ports. The transfer rate associated with the ingress DMA unit can be limited so that packets are transmitted from the ingress DMA unit to the packet processing engine at a communication rate that is at least equal to the aggregate software port ingress rate. If each software port comprises a dedicated rate-limited ingress DMA queue, packets from a rate-limited ingress DMA queue can be transmitted at the at least the communication rate of the corresponding software port.
Abstract:
Methods, systems, and devices for wireless communications are described that asynchronous carrier aggregation, including between high frequency band and lower frequency band transmissions. A user equipment (UE) may be configured to monitor transmissions in a first frequency band and a second frequency band. The UE may measure a timing difference between transmissions in the first frequency band and one or more of the transmissions in the second frequency band, and transmit an indication of the timing difference to a base station. The base station may use the timing difference to determine whether the UE is to use asynchronous carrier aggregation. If the base station determines that the UE is to use asynchronous carrier aggregation, the base station may configure the UE to observe at least a minimum amount of delay when conducting uplink signaling via one of the frequency bands.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may use transmissions causing power density exposure (PDE) to nearby users. To reduce the PDE of an antenna module (e.g., below a maximum PDE threshold), the UE may implement a shielding strip around the antenna module. For example, the antenna module may include a substrate having a first surface and a set of antenna elements on the first surface. The shielding strip may enclose the set of antenna elements of the antenna module and extend away from the first surface above the antenna elements. The shielding strip may reduce PDE outside a field of view of the antenna module. Additionally, in some cases, the placement of the antenna module in the UE and the materials used for constructing the UE may further reduce PDE.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may perform calibration of a transceiver chain to maintain or improve operation of a device or comply with legal or protocol requirements. The UE may receive one or more wireless signals indicating a first set of resources where the first device is scheduled to transmit or receive communications. The UE may calibrate a wireless transceiver chain of the first device in a second set of resources. The second set of resources excludes the first set of resources and includes at least a portion of a third set of resources. The third set of resources are resource in which the first device has an option to transmit or receive communications based on a protocol configuration.