Abstract:
For channel estimation in a spectrally shaped wireless communication system, an initial frequency response estimate is obtained for a first set of P uniformly spaced subbands (1) based on pilot symbols received on a second set of subbands used for pilot transmission and (2) using extrapolation and/or interpolation, where P is a power of two. A channel impulse response estimate is obtained by performing a P-point IFFT on the initial frequency response estimate. A final frequency response estimate for N total subbands is derived by (1) setting low quality taps for the channel impulse response estimate to zero, (2) zero-padding the channel impulse response estimate to length N, and (3) performing an N-point FFT on the zero-padded channel impulse response estimate. The channel frequency/impulse response estimate may be filtered to obtain a higher quality channel estimate.
Abstract:
Certain aspects of the present disclosure provide techniques for managing scheduling of wireless communications. A method that may be performed by a user equipment (UE) includes receiving, from a base station, one or more configurations indicating a plurality of minimum scheduling offset values; receiving, from the base station, a signal indicating one of the minimum scheduling offset values as an updated value to be used for communications with the base station and a type of scheduling; determining a delay based on the type of scheduling; and after the reception of the signal, using the updated value for communications with the base station based on the determined delay.
Abstract:
Certain aspects of the present disclosure relate to communication systems, and more particularly, to improving performance for sounding reference signal (SRS) antenna switching in carrier aggregation (CA). A method is provided, that may be performed by a user equipment (UE) for wireless communications. The method includes determining one or more band combinations that share an antenna switch and sending a list of one or more bands in the one or more band combinations to a base station (BS). The BS receives the list and schedules the UE based on the received list.
Abstract:
Methods, apparatuses, and computer program products are disclosed for facilitating indicating and detecting control region sizes. A multi-carrier communication between a wireless terminal and a base station is facilitated by a first carrier having a first control region size and a second carrier having a second control region size. Embodiments are disclosed in which control region sizes are ascertained from a control signal, wherein the control is generated by either scrambling an aspect of the control signal based on the second control region size, or relating the second control region size with the first control region size. Other disclosed embodiments for ascertaining control region sizes include a reverse interleaver embodiment, wherein a set of modulation symbols is mapped beginning from a last data symbol and ending with a first available data symbol.
Abstract:
When reporting a channel quality metric, such as a channel quality index (CQI) to a base station, a user equipment (UE) may base its report on a calculated spectral efficiency for allocated data channels. The UE may calculate a spectral efficiency metric over a number of subframes to arrive at an average spectral efficiency measurement which may be converted to CQI and reported to a base station.