Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a signal. The UE may measure the signal to explore one or more inactive ranks or inactive precoders. The UE may transmit, based at least in part on the measuring, a report that includes channel state information for at least one of the one or more inactive ranks or inactive precoders. Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment concurrently communicates with a source base station (BS) and a target BS on a connection with the source BS and a connection with the target BS as part of a make-before-break (MBB) handover procedure; and performs a common packet data convergence protocol (PDCP) function for the connection with the source BS and the connection with the target BS before the connection with the source BS is released as part of the MBB handover procedure. Numerous other aspects are provided.
Abstract:
Aspects of the present disclosure generally relate to wireless communication. For example, aspects of the present disclosure provide techniques for determining one or more modulation orders to be used for the communication of control channels and/or data channels. An exemplary method, performed by a UE, may include receiving downlink control information (DCI) that allocates resources for a communication, the DCI may include a first field that indicates a transport block size (TBS) of the communication and a second field, different from the first field, that indicates a modulation order of the communication, wherein the communication includes a transmission or a reception, and processing the communication according to the indicated modulation order. Numerous other aspects are provided.
Abstract:
Aspects of the present disclosure provide techniques for the user equipment (UE) to select a power management mode from a plurality of power management modes supported by the UE based on decoding of a portion of the downlink subframe. For example, when the UE receives a subframe from a base station, the UE may decode a control channel region of the subframe to determine whether the subframe includes a channel grant allocated to the UE. If no channel grant is included in the subframe, the UE may select a power management mode for the UE from the plurality of power management modes supported by the UE that maximizes the UE's sleep opportunities while balancing the deficient performance costs.
Abstract:
Various aspects related to techniques for harmonization between common reference signal (CRS) and demodulation reference signal (DM-RS) based transmission modes (TMs) in unlicensed spectrum are described. In one aspect, a downlink/uplink (DL/UL) subframe configuration may be signaled for each subframe. Information provided by the DL/UL subframe configuration may indicate whether the respective downlink subframe is a single-frequency network (MBSFN) subframe (associated with DM-RS-based TM) or a non-MBSFN subframe (associated with CRS-based TM). In another aspect, periodic as well as aperiodic channel state information (CSI) reporting requests may be supported. In yet another aspect, discontinued reception (DRX) wake ups for unlicensed carriers may be explicitly or implicitly indicated to a user equipment (UE) via a carrier in a licensed spectrum.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may identify one or more symbols, associated with downlink communication of a first radio access technology (RAT), that are Impacted by antenna switching used to transmit an uplink reference signal of a second RAT. The UE may perform a mitigation action to mitigate downlink performance degradation associated with the first RAT based at least in part on identifying the one or more symbols. Numerous other aspects are described.
Abstract:
Some techniques and apparatuses described herein protect components of a user equipment (UE), such as a low noise amplifier (LNA), from internal interference. For example, the LNA may be disconnected from a receive chain during periods of high internal interference, and may be reconnected to the receive chain during periods of low internal interference. Furthermore, some techniques and apparatuses described herein improve performance by adjusting operations of the UE to account for and/or offset increased internal interference due to a receive chain that does not include a surface acoustic wave (SAW) filter to remove unwanted radio frequency signals. For example, one or more operations of a baseband processor may be modified to account for the increased internal interference. Additionally, or alternatively, reporting of channel state information may be modified to account for increased internal interference of the UE. Additional details are described herein.
Abstract:
Methods and apparatuses relate to sounding reference signal (SRS) transmit antenna selection in wireless communication systems. For example, a user equipment (UE) may select, from a set of antennas, a subset of antennas for SRS transmission based on at least one antenna selection parameter. The UE may further transmit, on an uplink communication channel, the SRS using the subset of antennas to a network entity. In some aspects, the at least one antenna selection parameter may include a reference signal receive power (RSRP) value, a signal-to-noise ratio (SNR) value, a spectrum efficiency value, and/or an SNR value and a channel correlation value.
Abstract:
Certain aspects of the present disclosure relate to communication systems, and more particularly, to improving performance for sounding reference signal (SRS) antenna switching in carrier aggregation (CA). A method is provided, that may be performed by a user equipment (UE) for wireless communications. The method includes determining one or more band combinations that share an antenna switch and sending a list of one or more bands in the one or more band combinations to a base station (BS). The BS receives the list and schedules the UE based on the received list.
Abstract:
An apparatus may receive a downlink subframe from a serving base station. The downlink subframe may include interference associated with a second subframe transmitted by an intra-frequency neighboring cell (IFNC). The apparatus may detect whether there are interfering cell-specific reference signals (CRS) in one or more symbols of the second subframe. The apparatus may determine, based on whether interfering CRS are detected in the one or more symbols of the second subframe, a subframe type of the second subframe. The apparatus may cancel detected interfering CRS from the received downlink subframe based on the determined subframe type of the second subframe.