Abstract:
Access terminals are provisioned to conduct intra-frequency, inter-frequency, and inter-RAT measurements and report physical layer identifiers of detected cells. The provisioning may involve cycling through all or a portion of a defined superset of physical layer identifier one subset at a time. In addition, the physical layer identifiers may be prioritized to improve the search procedure. Measurement report messages (including physical layer identifiers of the detected cells) are received at an access point as a result of the provisioning. A neighbor cell list for the femtocell is maintained based on the received measurement report messages and, optionally, other information. This other information may related to, for example, one or more of: physical layer identifier information received from access terminals that register with the access point, physical layer identifier information received via network listen operations, information regarding co-located cells, or physical layer identifier information received from a network entity.
Abstract:
Methods and apparatuses are provided for determining a transmission power cap for one or more devices based at least in part on pathloss measurements to one or more access points received from the one or more devices. A common transmission power cap can also be computed for assigning to devices communicating with an access point, and the transmission power cap for a given device can be adjusted when the transmission power is at or a threshold level from the common power cap to conserve signaling in the wireless network. Adjustment of the transmission power cap can additionally or alternatively be based on a received power at an access point related to signals from the device, an interference report from one or more access points, and/or the like.
Abstract:
Systems and methods for managing communication in an unlicensed band of frequencies to supplement communication in a licensed band of frequencies in unlicensed spectrum are disclosed. The management may comprise, for example, monitoring utilization of resources currently available to a first Radio Access Technology (RAT) via at least one of a Primary Cell (PCell) operating in the licensed band, a set of one or more Secondary Cells (SCells) operating in the unlicensed band, or a combination thereof. Based on the utilization, a first SCell among the set of SCells may be configured or de-configured with respect to operation in the unlicensed band.
Abstract:
Techniques are provided for utilizing selected inter-frame spacing, such as reduced inter-frame spacing (RIFS) or short inter-frame spacing (SIFS) to avoid failed data transmissions in a Wi-Fi network or the like. For example, there is provided a method, operable by a transmitter node or entity, such as, for example, an access point (AP), that may involve sending a data transmission in a data aggregation mode, the data transmission comprising aggregated MAC protocol data units (A-MPDUs). The method may involve monitoring for and detecting potential short interference bursts in the network. The method may involve re-sending the data transmission in a data bursting mode, the data transmission comprising back-to-back data packet bursts separated by a selected inter-frame spacing.
Abstract:
The present disclosure presents a method and apparatus for joint power and resource management in a wireless network. For example, the disclosure presents a method for receiving reference signal received power (RSRP) measurements of one or more neighboring base stations of a base station. In addition, such an example method, may include calibrating a transmit power of the base station based at least on the received measurements, and adjusting transmit resources of the base station in response to the calibration. As such, joint power and resource management in a wireless network may be achieved.
Abstract:
The disclosure provides techniques for reducing interference caused by a first device to a second device receiving a satellite-based positioning signal. A device such as a user equipment (UE) or base station (eNB) determines a threshold transmission power for a transmission frequency of the device. The device also determines a signal strength of the satellite-based positioning system signal at the device. The device then controls a transmission property of the device based on the signal strength of the satellite-based positioning system signal when a transmission power of the device at the transmission frequency satisfies the threshold. The device may also determine that reception of the satellite-based positioning system signal by the second device is likely to be affected by a transmission from the device at a transmission power that satisfies the threshold and control the transmission property when reception of the satellite-based positioning system signal is likely to be affected.
Abstract:
Aspects describe communications environments in which femtocell capability is provided to devices within the communications network. A non-femto-enabled device and/or a femto-enabled device can communicate with a femto-enabled device in the same geographical area for femto-enabled peer-to-peer communication. Two non-femto-enabled devices can be provided femto functionality through utilization of a femto-enabled device, which operates as a hub between the two devices. Other aspects relate to enhanced position determination, adaptive coverage enhancement, local mobile networks, open access femtocells without a backhaul, and local broadcast of media though utilization of femto-enabled devices.
Abstract:
An apparatus, configured to communicate with other apparatuses in a wireless network and operating in a frequency-division duplexing mode, can be caused to refrain from transmitting during a number of subframes of a frame of a downlink frequency band prior to a detection of a radar transmission, can be caused to send a first signal, related to monitoring for the radar transmission, to a second apparatus, and can be caused to change the number of the subframes of the frame of the downlink frequency band in response to an event that can be an increase or a decrease in a load of the apparatus or the detection of the radar transmission. Optionally, placement of the subframes within the frame of the downlink frequency band can correspond to placement of subframes that are designated for an uplink communication within a frame configured in accordance with the Long-Term Evolution Time-Division Duplex standard.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with making UE handover decisions. In one example, a node is equipped to obtain one or more UE measurement values associated with a UE, determine a mobility state of the UE based at least in part on the obtained one or more UE measurement values, and adjust one or more handover parameters based at least in part on the determined mobility state of the UE. In another example, a UE is equipped to obtain one or more UE measurements, determine a handover state of a UE based on the obtained one or more UE measurements, and perform a handover-related action based on the determined handover state of the UE.
Abstract:
Techniques for supporting communication by base stations are disclosed. In an aspect of the present disclosure, for network-based alarming, a base station may notify a designated user equipment (UE) whenever certain trigger events occurred at the base station. The base station may send notification messages for detected trigger events to the UE for timely intervention. In another aspect of the present disclosure, for network-based reconfiguration, a base station for a small cell may be reconfigured by a network server based on performance metrics for base stations in a wireless system. The reconfiguration may improve the performance of the base station and possibly other base stations in the wireless system.