Abstract:
A position detection system for use in association with computing applications, the system comprising: a positional element for attaining a position and comprising a first emitter for emitting a substantially continuous ultrasonic waveform decodable to fix said position, and a detector arrangement for detecting said waveform in a manner permitting fixing of said position and outputting said waveform for computation, in a manner retentive of said position fixing ability.
Abstract:
A system for small space positioning comprises a transmitting element at a fixed and known location, which transmitting a modulated continuous wave, for example an ultrasonic wave, having a continuous carrier signal part and a base-band signal modulated thereon. The transmitting element transmits the modulated continuous wave over a range in which an object to be positioned may appear. A receiving element receives signals transmitted by the transmitting device and reflected by the object, and a position detection element determines a position of the object from analysis of both the carrier signal part and the base-band signal received from the reflected signal.
Abstract:
Embodiments of apparatuses and methods for detecting a spoof finger are disclosed. In one embodiment, an ultrasonic fingerprint sensor comprises an ultrasonic transmitter configured to transmit an ultrasonic wave to a finger, an ultrasonic sensor array configured to receive a reflected ultrasonic wave from the finger, and a controller configured to determine a reflected acoustic energy of the finger based on a difference between average amplitudes of the reflected ultrasonic wave from ridges and valleys of the finger; and determine whether the finger is a spoof based at least in part on the reflected acoustic energy of the finger.
Abstract:
Disclosed is an apparatus and method for detecting presence of persons or objects within an environment. The apparatus and method may determine a difference in relative position between transmitters having an unknown room position. A transmitter may emit coded signals that may be detected by other transmitters within the room and properties of the coded signal can form a baseline for comparison to new signals after the baseline is established. Through the use of coded signals and relative distance location between transmitters, movement and position of persons or objects within the room may be determined.
Abstract:
Embodiments of apparatuses and methods for detecting a spoof finger are disclosed. In one embodiment, an ultrasonic fingerprint sensor comprises an ultrasonic transmitter configured to transmit an ultrasonic wave to a finger, an ultrasonic sensor array configured to receive a reflected ultrasonic wave from the finger, and a controller configured to determine a reflected acoustic energy of the finger based on a difference between average amplitudes of the reflected ultrasonic wave from ridges and valleys of the finger; and determine whether the finger is a spoof based at least in part on the reflected acoustic energy of the finger.
Abstract:
An apparatus that has a touchscreen, is configured to determine a response to a contact by a hand with a region of the touchscreen, and includes a first means for determining a location of a graphical projection of a digital pen onto the touchscreen, a second means for determining, via an ultrasonic wave, a first angle between a first line along an edge of the touchscreen and a second line along the graphical projection, a third means for determining a distance between the touchscreen and the digital pen, and a fourth means for determining, from the distance, the response to the contact by the hand with the region defined by the location and the first angle.
Abstract:
Implementations of the technology described herein provide a method for detecting gesture commands using an ultrasonic pen system. The system has a pen and a user device. Detection of gesture commands is based on two-dimensional gestures relative to the screen of a user device, three-dimensional gestures relative to the screen of the user device, roll/rotation around a longitudinal axis of the pen body, and micro-twisting around the longitudinal axis of the pen body. The user device receives the gestures and translates them into commands such as UNDO and BACK.
Abstract:
A position detection system for use in association with computing applications, the system comprising: a positional element for attaining a position and comprising a first emitter for emitting a substantially continuous ultrasonic waveform decodable to fix said position, and a detector arrangement for detecting said waveform in a manner permitting fixing of said position and outputting said waveform for computation, in a manner retentive of said position fixing ability.
Abstract:
Some disclosed methods involve obtaining current A-line data corresponding to reflections of ultrasonic waves from a target object detected by a single receiver pixel, obtaining current ultrasonic fingerprint image data corresponding to reflections of ultrasonic waves from a target object surface, obtaining previously-obtained A-line data that was previously obtained from an authorized user, and obtaining previously-obtained ultrasonic fingerprint image data that was previously obtained from the authorized user. Some disclosed methods involve estimating, based at least in part on the current A-line data, the previously-obtained A-line data, the current ultrasonic fingerprint image data and the previously-obtained ultrasonic fingerprint image data, whether the target object is a finger of the authorized user. The estimation may involve an anti-spoofing process based at least in part on the current A-line data and the previously-obtained A-line data.
Abstract:
Techniques and apparatus are described for obtaining user input via a stylus configured to serve as an interface for providing user input into a computing device. The computing device may obtain rotation-related information indicative of rotational position or rotational movement of the stylus about a longitudinal axis of the stylus. The computing device may identify an operation in response to the rotation-related information, and perform the identified operation.