Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a first device and a second device may communicate over a communication link using a set of antenna elements. The first device may identify one or more antenna array reconfiguration trigger conditions and may correspondingly select a first subset of antenna elements for operation. The first device may transmit a message to the second device including an indication of the antenna array reconfiguration at the first device, a request for the second device to modify the second device's antenna array configuration, or both. The second device may receive the message and, based on the indication or the request, may modify its antenna array configuration. For example, the second device may select a second subset of antenna elements based on the selected first subset of antenna elements. The devices may communicate using their modified antenna array configurations.
Abstract:
In an aspect, an apparatus may be an apparatus for wireless communication. The apparatus for wireless communication may include a transceiver, a memory, and at least one processor coupled to the memory and configured to execute instructions stored in the memory to control the transceiver. In another aspect, an apparatus may be an apparatus for wireless communication. The apparatus for wireless communication may include a patch antenna coupled to the transceiver. The patch antenna includes a patch, a ground plane substantially located with respect to the patch, a probe feed coupled to the patch, and a slot-coupled feed configured to couple to the patch.
Abstract:
Wireless communications systems and methods related to mitigation of calibration errors are provided. A base station (BS) transmits, via an antenna array including a plurality of antenna elements, a first communication signal using a first number of the plurality of antenna elements and a first transmission power level to a user equipment (UE). The BS receives from at least one UE, a measurement report based on the first communication signal. The BS transmitting a second communication signal using a second number of the plurality of antenna elements and a second transmission power level based on the one or more measurement reports. At least one of the first number of the plurality of antenna elements is different from the second number of the plurality of antenna elements, or the first transmission power level is different from the second transmission power level. Other aspects and features are also claimed and described.
Abstract:
Methods, systems, and devices are described for wireless communication using the mmW spectrum. In particular, an antenna structure may be designed to integrate with an external housing of a wireless communication device. For example, the external housing may include a cavity that facilitates reception and/or transmission of radio frequency communication signals by an antenna element of the antenna structure. Such an antenna structure may be designed to be relatively compact to deal with the limited real estate available on modern wireless communication devices (e.g., cellular telephones).
Abstract:
A wireless device with built-in self test (BIST) capability for testing/calibrating transmit and receive circuits is disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) includes a first circuit and a second circuit. The first circuit (e.g., a transmitter or a mixer) provides a test signal to at least one transmit path. The test signal is electro-magnetically coupled from the output of the at least one transmit path to a test signal line. For example, the test signal may be provided from the at least one transmit path via at least one antenna feed line to at least one antenna element and may be electro-magnetically coupled from the at least one antenna feed line to the test signal line. The second circuit (e.g., a buffer, a receiver, or a mixer) processes a received test signal from the test signal line.
Abstract:
Methods and systems for operating a base station to reduce beam squinting include determining a lower bound on the number of directional beams used by the base station for millimeter wave wideband communications (e.g., based on operating conditions of the base station or wireless devices within the coverage area of the base station) and transmitting synchronization signal block (SSB) messages in an SSB Burst Set consistent with the determined lower bound on the number of directional beams used by the base station for millimeter wave wideband communications.
Abstract:
Methods, systems, and devices for wireless communications are described that support beam correlation across frequency bands for beam selection in the event of a frequency switch. For example, a base station may determine a configuration indicating a mapping between a set of beam identifiers (IDs) and a set of angle coverage ranges for a set of frequency ranges which corresponds to a user equipment's (UE) operating frequencies. In some examples, the UE may undergo a frequency switch and switch from a first operating frequency to a second operating frequency. The UE may select a beam ID based on the mapping and communicate with the base station via the second operating frequency using a beam associated with the selected beam ID.
Abstract:
Methods, systems, and devices for wireless communications are described. One method may inlcude a base station or other device estimating an intended coverage area of all possible communication devices that are to be serviced by the base station or other device. The base station or other device may dynamically optimize at least one transmission metric such as a codebook, in response to a change in the coverage area. Another method may include a base station estimating a dynamic coverage area of a set of all possible user equipments or devices to be serviced, and dynamically optimizing a codebook structure in response to a change in the coverage area. Another method may include the base station determining a use-case of the set of all possible user equipments to be serviced by the base station, and hard-coding a metric corresponding to the use case.
Abstract:
Wireless communications systems and methods related to mitigation of calibration errors are provided. A base station (BS) transmits, via an antenna array including a plurality of antenna elements, a first communication signal using a first number of the plurality of antenna elements and a first transmission power level to a user equipment (UE). The BS receives from at least one UE, a measurement report based on the first communication signal. The BS transmitting a second communication signal using a second number of the plurality of antenna elements and a second transmission power level based on the one or more measurement reports. At least one of the first number of the plurality of antenna elements is different from the second number of the plurality of antenna elements, or the first transmission power level is different from the second transmission power level. Other aspects and features are also claimed and described.
Abstract:
Techniques are discussed herein for improving the form factor of a wideband antenna in a mobile device. An example of a wireless device according to the disclosure includes at least one radio frequency integrated circuit, a flex cable assembly operably coupled to the at least one radio frequency integrated circuit, and at least one radiator operably coupled to the flex cable assembly via at least one conductor in a ball grid array.