Abstract:
A rack system for a server includes a number of server units, which includes first to the third sets of server units, voltage converter, first to third power supply circuits. The voltage converter receives and converters a three-phase alternating current (AC) power signal to provide first to third single-phase power signals. The first to the third sets of power supply circuits respectively provides firs to third direct current (DC) power signals according to the first to the third single-phase power signals. The first set to the third set of server units is respectively powered by first to the third DC power signals or respectively powered by first part, second part, and third part of the first to the third DC power signals.
Abstract:
A server rack is pre-loaded with servers, prior to the server rack being transported to a data center. In order to facilitate movement of the pre-loaded servers and server rack into the data center, dampers are provided on the underside of the server rack. The dampers absorb vibration as the server rack and servers are moved to, or within, the data center on transporting pallets.
Abstract:
In some implementations, a hard drive carrier is configured to couple and decouple a hard drive to/from a chassis (e.g., motherboard). The hard drive carrier can receive and house a hard drive in a base securing portion, the base securing portion adapted to slide and tilt in relation to a base of the hard drive carrier. The hard drive carrier can include a pivoting lever comprising a handle that can be used to couple and decouple the hard drive from the motherboard. Using the handle to pivot the lever into an open position causes the hard drive to tilt upwards to decouple from the chassis and facilitate insertion or removal of the hard drive to/from the hard drive carrier. Pivoting the lever into a closed position causes the hard drive to lie flat and couple to the chassis.
Abstract:
In some embodiments, a rack system is configured to comprise a removable fan system. The fan system enables thermal management of the rack system. The removable fan system includes a replaceable fan tray that can be assembled in the rack system by engaging a connecting mechanism and connecting a connecting cable. The fan tray is engaged with the connecting mechanism to be securely attached to the rack system. The fan tray is connected to a bus bar to receive power or necessary data to be operated. The fan tray can be disassembled from the rack system while the bus remains active, and enables access to the server or the rack system. The replaceable fan tray enables easy replacement of the fan system and access to the rear side of the rack system.
Abstract:
A server assembly including a housing having a slidable tray transitionable between an open configuration and a closed configuration. A plurality of tray bodies disposed in the slidable tray, each of the plurality of tray bodies configured to removably receive at least one component module. The plurality of tray bodies arranged in rows, one behind the other, thereby having an first tray body and a second tray body. The second tray body is transitionable between a loading configuration and stored configuration. The storing configuration, the second tray body is arranged adjacent to the first tray body such that the receiving assembly is inaccessible. The loading configuration, the second tray body is translated relative to the tray and the first tray body such that the receiving assembly is accessible.
Abstract:
An apparatus comprising a wall of a drawer adapted to secure a set of cables at a first end, the set of cables can be housed in a cable housing, the wall coupled to a roller and a flattening appendage. In some implementations, the apparatus can comprise a deck comprising a plate adapted to secure the set of cables at a second end, the plate located at a midpoint of the deck. Alternatively, a drawer is adapted to slide along the deck, a shelf attached to the drawer. The flattening appendage presses down on the first end of the set of cables and the roller presses down on the second end of the set of cables as the drawer is opened and closed such that the set of cables is stored neatly under the drawer.
Abstract:
A modular chassis includes a first casing module, a second casing module and a back plate module. The second casing module and the back plate module are disposed inside the first casing module. The first casing module includes a first outer box and a second outer box, in which the second outer box is capable of sliding relative to the first outer box and joining to the first outer box such that the length of the first casing module is adjustable.
Abstract:
A tiered immersion cooling system includes a chassis, a cabinet frame slidably mounted to the chassis, an upper immersion tank, and a lower immersion tank. The cabinet frame is slidable between a first internal position and a first external position. Sliding motion of the cabinet frame is in a horizontal direction along a depth of the chassis. The upper immersion tank is slidably mounted to the chassis. The upper immersion tank is slidable with the cabinet frame in the horizontal direction. The upper immersion tank slides relative to the cabinet frame, in a vertical direction along a height of the chassis. The lower immersion tank is positioned below the upper immersion tank in the vertical direction. The lower immersion tank is mounted to slide independently from the cabinet frame, in the horizontal direction. The lower immersion tank slides between a second internal and a second external position.
Abstract:
A cabinet structure is provided. The cabinet structure includes two side frames, and at least one vertical sectional bar connecting the side frames via at least two frame elements. The frame elements include first and second frame elements. The first frame element includes a connecting face that has a frontal cavity and a plurality of guide elements. The second frame element includes a receiving face configured to receive the guide elements of the first frame element, and a through hole aligned with the frontal cavity of the first frame. The frame elements also include a securing element configured to be screwed into the frontal cavity via the through hole to forge a secure interlocking fitting of the first and second frame elements.
Abstract:
A shock absorber apparatus is provided that includes an upper rack frame, a middle plate, and a lower rack frame. The upper rack frame is configured to secure a bottom frame of a rack server. The upper rack frame includes a first set of rail assemblies. The middle plate includes a second set of rail assemblies and a first set of carriers corresponding with the first set of rail assemblies of the upper rack frame. The first set of rail assemblies is configured to restrict movement of the first plurality of carriers to a first axis. The lower rack frame includes a second set of carriers corresponding with the second set of rail assemblies of the middle plate. The second set of rail assemblies is configured to restrict movement of the second plurality of carriers to a second axis.