摘要:
A magnetic recording media is formed with high in-plane coercivity employing dual magnetic layers. The first magnetic layer is sputter deposited in a chamber employing a shield such that the minimum incident angle of impinging atoms is relatively large, e.g., greater than about 26°. Embodiments of the present invention comprise depositing a NiAl seedlayer, a Cr or Cr alloy underlayer and a first CoCrTa magnetic layer at a thickness less than about 50Å for inducing the preferred (10.0) crystallographic orientation in the subsequently deposited second magnetic layer, e.g., CoCrPtTa or CoCrPtTaNb having a high Cr content of about 16 to about 21 at. %.
摘要:
Sputter-deposited amorphous metal oxide films on substrates comprising an aluminum-containing support and a Ni-containing pre-coat reduce Ni ion migration significantly from the substrate onto the top surface of the magnetic recording media. Longitudinal magnetic recording media deposited on metal oxide sealing layers have very good magnetic recording performances and are suitable for high density recording application.
摘要:
A magnetic recording medium on glass or Al substrates with film structure of NiAl seed layer/CrMo underlayer/CoCrPtB magnetic layer/carbon overcoat, in which the magnetic layer has a substantially (10.0) crystallographic orientation, exhibits high coercivity, high signal-to-medium noise ratio and low transition jitter. The medium can be used for high-density longitudinal magnetic recording. Embodiments include forming a surface oxidized NiAl sub-seed layer on a glass or glass-ceramic substrate, and sequentially depositing a seed layer of NiAl, an underlayer of Cr or Cr-alloy, such as CrMo, and a CoCrPtB magnetic layer.
摘要:
Reproducible texturing of magnetic recording media is enhanced by sputtering a buffer layer, such as Ni—P, on a nonmagnetic substrate, prior to sputtering a textured bump layer. A magnetic recording medium comprising a sputter textured metal layer and high coercivity is achieved by employing an underlayer, such as NiAl or FeAl, preferably a composite underlayer containing a chromium or chromium-alloy layer and a NiAl layer, on the sputter textured layer. Advantageously, the buffer layer, underlayer, textured bump layer, magnetic layer and carbon overcoat can be sputter deposited in a single apparatus.
摘要:
A magnetic recording medium is formed by depositing a Cr-containing sub-underlayer on a surface oxidized seed layer, such as NiP, with direct current (DC) magnetron sputtering, depositing a NiAl or FeAl underlayer on the sub-underlayer, and depositing a Cr-containing intermediate layer on the NiAl or FeAl underlayer. The medium features high coercivity, low noise, and (200)-dominant underlayer crystallographic orientation, even with sub-underlayer deposition at temperatures as low as about 25.degree. C. The medium is suitable for high density longitudinal magnetic recording.
摘要:
Reproducible texturing of magnetic recording media is enhanced by sputtering a buffer layer, such as Ni-P, on a nonmagnetic substrate, prior to sputtering a textured bump layer. A magnetic recording medium comprising a sputter textured metal layer and high coercivity is achieved by employing an underlayer, such as NiAl or FeAl, preferably a composite underlayer containing a chromium or chromium-alloy layer and a NiAl layer, on the sputter textured layer. Advantageously, the buffer layer, underlayer, textured bump layer, magnetic layer and carbon overcoat can be sputter deposited in a single apparatus.
摘要:
Simultaneous crystallographic orientation and grain size refinement of the magnetic layer are achieved by depositing a grain size control layer on a underlayer. Embodiments include depositing a CrV grain size control layer on a Cr underlayer at thickness ratio of underlayer to grain size control layer of about 0.5 to about 2. Magnetic layers having a grain size of about 100 .ANG. to about 250 .ANG., e.g. at 180 .ANG. to about 220 .ANG., are achieved.
摘要:
A high areal density magnetic recording medium with high remanent coercivity and high signal-to-noise ratio is formed with dual magnetic layers, the first or lower magnetic layer having a higher saturation magnetization than the second or upper magnetic layer. Embodiments include first and second magnetic layers containing Co and Pt, wherein the first magnetic layer comprises less platinum than the second, e.g., a first magnetic layer of Co15%Cr8%Pt4%Ta and a second magnetic layer of Co15%Cr11%Pt4%Ta.
摘要翻译:形成具有高剩磁矫顽力和高信噪比的高密度磁记录介质,具有双磁性层,第一或下磁层具有比第二或上磁层更高的饱和磁化强度。 实施例包括含有Co和Pt的第一和第二磁性层,其中第一磁性层包含比第二磁性层少的铂,例如Co15%Cr8%Pt4%Ta的第一磁性层和Co15%Cr11%Pt4%的第二磁性层, Ta
摘要:
A magnetic recording medium exhibiting high remanent coercivity and low noise is produced by depositing a first NiAl seedlayer on a non-magnetic substrate, e.g., glass, ceramic or glass-ceramic material, at a relatively low temperature, and subsequently depositing a second NiAl seedlayer on the first seedlayer at a relatively higher temperature. Embodiments include depositing a first NiAl seedlayer at a temperature less than about 120.degree. C., e.g., less than about 100.degree. C., and depositing a second NiAl seedlayer thereon at a temperature greater than about 200.degree. C., e.g. greater than about 230.degree. C. Embodiments also include depositing a Cr-alloy underlayer, CrV, on the second seedlayer.
摘要:
A glass or glass-ceramic substrate comprising about 0.5 to about 32 wt. % Li.sub.2 O is employed as a non-magnetic substrate of a magnetic recording medium. Migration of Li from the substrate to the medium's surface is prevented by forming an amorphous NiP sealing layer on the substrate, with an optional adhesion enhancement layer therebetween. Embodiments include surface oxidizing the amorphous NiP sealing layer for enhanced recording performance.