Abstract:
There is proposed a method of surface-treating a cast intermetallic component, which is intended primarily to reduce or remove surface porosity from the component. The method includes the steps of: providing a cast intermetallic component; placing the component in an inert atmosphere; focussing a laser beam on a surface of the component; traversing the laser beam over at least a region of said surface whilst the component is in said inert atmosphere; and controlling the laser beam during said traversing step so as to locally melt the intermetallic material of the component to a depth of no more than 300 μm, as measured from said surface of the component.
Abstract:
A gearbox includes a sun gear, a plurality of planet gears, an annulus gear and a planet carrier. The planet carrier includes a first ring, second ring spaced axially from the first ring, a plurality of circumferentially spaced axles and a plurality of circumferentially spaced support structures extending axially between and secured to the first ring and second ring. Each planet gear is rotatably mounted on a respective one of the axles. The first ring has a plurality of circumferentially spaced recesses and the second ring has a plurality of circumferentially spaced recesses. Each recess in the second ring is aligned with a corresponding one of the recesses in the first ring. A first end of each support structure locates in a recess in the first ring. A second end of each support structure locates in a recess in the second ring. Each support structure comprises a fused powdered material.
Abstract:
A method of manufacture comprising: controlling provision of a first mould part including an inner surface defining a first cavity, the inner surface of the first mould part comprising a plurality of first grooves; controlling provision of a second mould part including an inner surface defining a second cavity, the inner surface of the second mould part comprising a plurality of second grooves; controlling coupling of the first mould part and the second mould part, the first cavity and the second cavity forming a third cavity, the plurality of first grooves and the plurality of second grooves forming a double helical pattern; controlling provision of a powder to the third cavity; and controlling cold isostatic pressing of the powder within the third cavity to form a double helical gear.
Abstract:
An apparatus for manufacturing an article from powder material including a first table, a second table rotatably mounted on the first table about a first axis and a third table rotatably mounted on the second table about a second axis. A hollow canister is supported by the third table. A vibrator is arranged to vibrate the canister. A first device is arranged to rotate the second table about the first axis and a second device is arranged to rotate the third table about the second axis. A hopper is arranged to supply powder material into the canister and a valve controls the flow of powder material from the hopper into the canister. A processor is arranged to control the valve, the vibrator, the first device and the second device to control the filling and packing density of the canister.
Abstract:
The present invention provides a pipe for transferring powder material from a reservoir to a container e.g. prior to hot isostatic pressing. The pipe comprises a continuous outer wall and a concentric continuous inner wall enclosed within and spaced from the outer wall. The spacing between the inner and outer walls defines a flow channel extending from an inlet to an outlet. The radial cross sectional area of the outlet is greater than the cross sectional area of the inlet.
Abstract:
A method and apparatus for removing a canister 12 from a component 18 by forming an opening 30 in the canister wall thickness 14, 16 and introducing a pressurised fluid into the opening 14, 16 causing hydrostatic pressure build up between an internal canister surface 14 and the component 18, leading to the removal of the canister 12. This method and apparatus obviates the need to expend significant machining or chemical processing to remove the canister 12.
Abstract:
A component is treated in a fluidised bed by insertion of only a treatment part of the component into the treatment chamber of a fluidised bed apparatus. The non-treatment part of the component is located substantially outside the treatment chamber and out of contact with the fluidised bed. The boundary between the treatment part and the non-treatment part of the component is defined by a boundary containment surface at a fixed location with respect to the component. The boundary containment surface may be a seal which seals between the component to be treated and an aperture in a side wall of the treatment chamber.
Abstract:
A coolant for a subtractive machine process, the coolant comprising a phase change material which changes from a solid state to a liquid state as a result of frictional heat generated during the subtractive machine process of the machine tool on a component to be machined, and returns to the solid state as the component cools.
Abstract:
A joint assembly joins first and second components about a common axis. The first component has a first end portion having a radially outwardly facing surface shaped to fit radially inside a second surface of a hollow second end portion of the second component to form an interface between the opposing first and second surfaces. The first and second surfaces have a concavity extending laterally with respect to the axis such that when the first and second surfaces are opposingly arranged the opposing concavities define a cavity at the interface. A retaining member is insertable into the cavity at the interface to prevent axial separation of the first and second components. One of the first and second end portions has a free end protrusion axially spaced from the concavity and the other of the first and second end portions has an axially extending recess arranged to receive the free end.
Abstract:
Cladding of the interior of a component part of a pressure vessel is shown. A lining which conforms to at least a portion of the interior geometry of the component is positioned in the interior of the component. The lining is then pressed into the component past its yield strength. The lining is then fused to the component.