Abstract:
A novel impregnated activated carbon, containing from about 1.0 percent to about 15.0 percent by weight of MgO, has been found to be useful in a method of decolorizing a crude vegetable oil or a degummed vegetable oil, and removing organic acids therefrom, as well as in a process for making a refined edible vegetable oil wherein a crude vegetable oil is degummed, passed through the impregnated activated carbon, and subjected to steam distillation at reduced pressure. A novel method of preparing the MgO impregnated activated carbon has also been discovered.
Abstract:
A novel impregnated activated carbon, containing from about 1.0 percent to about 15.0 percent by weight of MgO, has been found to be useful in a method of decolorizing a crude vegetable oil or a degummed vegetable oil, and removing organic acids therefrom, as well as in a process for making a refined edible vegetable oil wherein a crude vegetable oil is degummed, passed through the impregnated activated carbon, and subjected to steam distillation at reduced pressure. A novel method of preparing the MgO impregnated activated carbon has also been discovered.
Abstract:
The present invention provides a method for lowering the rate of injection of activated carbon or carbon based sorbents for control of mercury in coal fired utility systems where the flue gas is also conditioned with SO3 or SO3/NH3 conditioning. The invention replaces the SO3 or SO3/NH3 conditioning by a water based conditioner which does not much adversely affect the efficiency of the injected activated carbon. One such water based conditioner is a composition contained in ATI-2001 available from ARKAY Technologies Inc., 609 Hancock Court, McKees Rocks, Pa. 15136.
Abstract:
The invention provides compositions to remove mercury and other pollutants from a fluid stream,, particularly flue gases containing them. The composition is a mixture consisting of (a) polyhydroxy compound selected essentially from the group consisting of mono, di, poly saccharides and mixture thereof; (b) a catalyst selected essentially from the group of ammonium compounds, sulfuric acid, phosphoric acid and salts, zinc chloride, and mixture thereof; and (c) specificity producing compound selected from the group of elemental sulfur, sullides and polysulfides of ammonia and alkalies, compounds and metals of copper, silver, tin, gold, and mixture thereof. The polyhydroxy compound in (a) above, either alone or in conjunction with the third group (c), above is also shown effective to remove mercury and other pollutants from fluid streams. The composition can be liquid or dry powder. Methods are provided for applying the formulation.
Abstract:
The present invention provides compositions including a salt selected from the group consisting essentially of sodium nitrate, sodium nitrite, ammonium nitrate, lithium nitrate, barium nitrate, cerium nitrate, and mixtures thereof, as flue gas conditioning formulations for use in controlling particulates, hazardous substances, NO.sub.x, and SO.sub.x. For the purpose of obtaining greater yields of particulate and hazardous substance removal, the compositions may further include a polyhydroxy compound, preferably selected from the group consisting essentially of sucrose, fructose, glucose, glycerol, and mixtures thereof. Methods are also provided for adding these compositions to the flue gas stream to control particulate, hazardous substance, NO.sub.x, and SO.sub.x emissions.
Abstract:
Methods for minimizing deposits in boilers, furnaces, incinerators or other systems firing tire derived fuels when burned in combination with other fuels which may include fuel oils are disclosed. These methods include treating the fuels so as to raise the magnesium content of the fuels or their combustion products comprising adding to the fuels one or more magnesium-containing compounds. The methods of treating tire derived fuels when they are burned with other fuels not including fuel oils includes adding to the fuel a suspension of magnesium hydroxide in water. The method of treating tire derived fuels when they are burned in combination with other fuels including fuel oils involves adding to the fuel a compound containing a magnesium-based slag mitigation component and a heavy metal combustion catalyst. In a preferred method of treating tire derived fuels when burned in combination with fuel oil, both the suspension of magnesium hydroxide in water and the solution containing the slag mitigation component and combustion catalyst are used to treat the fuels.
Abstract:
A carbon supported catalyst used for carbon monoxide oxidation is chemically modified by treating the activated carbon support with an oxidizing agent and/or a hydrophobic compound prior to impregnation with the catalyst mixture. The thus treated catalytic carbon is capable of oxidizing carbon monoxide in an air stream containing sulfur dioxide over an extended period of time.