摘要:
A luminescence microscopy method includes a sample being used, which comprises a certain substance, wherein the certain substance can be converted repeatedly from a first state, in which it can be excited into emitting luminescence radiation, into a second state, in which it cannot be excited into emitting luminescence radiation. The substance present in the sample can be brought into the first state by irradiating switch radiation. The certain substance can be excited into emitting luminescence radiation by irradiating excitation radiation. The sample emitting luminescence radiation can be displayed. A high-resolution selection of sample regions extending perpendicularly to a sample surface is carried out by irradiating either the switch radiation or the excitation radiation as structured illumination of the sample. A high-resolution selection of the sample surface is carried out by irradiating the switch radiation and/or the excitation radiation as TIRF illumination of the sample.
摘要:
Laser scanning microscope and its operating method in which at least two first and second light distributions activated independently of each other and that can move in at least one direction illuminate a sample with the help of a beam-combining element, and the light is detected by the sample as it comes in, characterized by the fact that the scanning fields created by the light distributions on the sample are made to overlap mutually such that a reference pattern is created on the sample with one of the light distributions, which is then captured and used to create the overlap with the help of the second light distribution (correction values are determined) and/or a reference pattern arranged in the sample plane or in an intermediate image plane is captured by both scanning fields and used to create the overlap (correction values are determined) and/or structural characteristics of the sample are captured by the two scanning fields as reference pattern and used to create the overlap in which correction values are determined.
摘要:
A beam corradiator for combining two radiation beams, preferably movable beams independent from each other in at least one direction, to scan and/or influence a sample, preferably a manipulation system and an imaging system, with a partially reflecting layer being provided for the corradiation, wherein the thickness of the layer is provided with a preferably consistent incline or decline over the optically effective cross-section of the beam corradiatior.
摘要:
Method for actuation control of a microscope, in particular of a Laser Scanning Microscope, in which, at least one first illumination light, preferably moving at least in one direction, as well as at least one second illumination light moving at least in one direction, illuminate a sample through a beam combination, a detection of the light coming from the sample takes place, whereby, at least one part of the illumination light is generated through the splitting of the light from a common illuminating unit, characterized in that, by means of a common control unit, a controlled splitting into the first and the second illumination light takes place, in which the intensity of the first illuminating light, specified by the user or specified automatically, is assigned a higher priority (is prioritized) compared to the specified value for the second illumination light, and an adjustment for the second illumination light takes place until a maximum value is obtained, which is determined by the value specified for the first illumination light.
摘要:
Method for enhancing the resolution of a microscope during the detection of an illuminated specimen and a microscope for carrying out the method, wherein in a first position, an illumination pattern is generated on the specimen, the resolution of which is preferably within the range of the attainable optical resolution of the microscope or higher, wherein a relative movement, preferably perpendicular to the direction of illumination, from a first into at least one second position of the illumination pattern on the specimen is generated at least once between the detection and the illumination pattern with a step width smaller than the resolution limit of the microscope and detection and storage of the detection signals take place both in the first and in the second position.