摘要:
Novel iodinated arylaliphatic triglyceride analogs as radiologic agents are liver and hepatocyte site-specific. The triglyceride backbone structure is preferably 1,3-disubstituted or 1,2,3-trisubstituted with, in some embodiments, a 3-substituted-2,4,6-triiodophenyl aliphatic chain wherein the chain has a structure similar to naturally occuring fatty acids. In another embodiment, a monoiodophenyl aliphatic chain is utilized. Any position remaining on the triglyceride backbone is substituted with a saturated or unsaturated aliphatic hydrocarbon chain of the type found in naturally occurring fatty acids. The triglyceride analogs can be radioiodinated. In a preferred embodiment, a lipid emulsion is provided as the carrier vehicle.
摘要:
The invention generally relates to novel fluorescent phospholipid compounds, compositions comprising these compounds, and diagnostic methods utilizing these compounds. A preferred compound of the present invention has the following structural formula: (I)
摘要:
The invention generally relates to novel fluorescent phospholipid compounds, compositions comprising these compounds, and their use in a variety of diagnostic applications, including fluorescence imaging of tumors. A preferred compound of the present invention has the following structural formula:
摘要:
A treatment schedule for radiopharmaceuticals is developed by collecting a volumetric history of tissue uptake in identified volumes of interest using emitted-radiation scans and relating this data to a treatment-radiopharmaceutical to develop a quantitatively accurate radiation treatment schedule of delivery amounts and delivery times of the treatment-radiopharmaceutical. This data may also be used to model biological effective dose and to prepare augmenting external radiation beam treatment schedules.
摘要:
The present invention provides phospholipid ether and alkyl phospholipid compounds and their combinations with other cancer therapy agents. More specifically, the invention relates to the use of phospholipid ether compounds comprising a “cold” isotope of iodine, e.g. 127I, or H, for treating cancer and combinations of phospholipid compounds comprising radioactive (i.e., “hot”) and non-radioactive (i.e., “cold”) isotopes of iodine.
摘要:
The present invention provides phospholipid ether and alkyl phospholipid compounds and their combinations with other cancer therapy agents. More specifically, the invention relates to the use of phospholipid ether compounds comprising a “cold” isotope of iodine, e.g. 127I, or H, for treating cancer and combinations of phospholipid compounds comprising radioactive (i.e., “hot”) and non-radioactive (i.e., “cold”) isotopes of iodine.
摘要:
The invention generally relates to novel fluorescent phospholipid compounds and compositions comprising these compounds. A preferred compound of the present invention has the following structural formula:
摘要:
The present invention discloses boronic acids and esters of phospholipid ether analogs and methods for their synthesis and use. The boronic acids and esters of phospholipid ether analogs described herein can be used in treating cancer and in particular can be used in conjunction with radiation therapy, such as external beam radiation therapy and neutron capture therapy to specifically target and kill cancer cells.
摘要:
The invention generally relates to novel deuterated phospholipid compounds, compositions comprising these compounds, and their use in a variety of cancer therapy and diagnostic applications.
摘要:
Disclosed are improved methods for the synthesis of phospholipid ether analogs and alkyl phosphocholine analogs. The methods allow greater versatility of the reactants used and greater ease in synthesizing alkyl chains of varying length while affording reaction temperatures at room temperature or below. The methods disclosed herein provide reactants and conditions using alkyl halides and organozinc reagents and do not utilize Gringard reactions thus, allowing greater ease of their separation and purity of products. The PLE compounds synthesized by the methods disclosed herein can also be used for synthesizing high specific activity phospholipid ether (PLE) analogs, for use in treatment and diagnosis of cancer.