Abstract:
An AC-to-DC power converting apparatus includes a power factor correction circuit generating a DC output voltage based on a rectified voltage obtained through rectifying an AC input voltage and on a PWM signal generated based on an adjustment current and a predetermined ramp signal. A multiplier-divider circuit includes: a ramp generating unit generating a ramp signal based on a clock signal and on a first detection voltage associated with the rectified voltage; a control unit generating a control signal based on the clock signal, the ramp signal, and a detection voltage generated based on the DC output voltage; and an output unit generating an adjustment signal based on an input signal associated with the rectified voltage and the control signal.
Abstract:
A switching power converting apparatus includes a voltage conversion module, a detecting unit, and a switching signal generating unit. The voltage conversion module converts an input voltage into an output voltage associated with a secondary side current, which flows through a secondary winding of a transformer and is generated based on a switching signal. The detecting unit generates a detecting signal based on the output voltage and a predetermined reference voltage. The switching signal generating unit generates the switching signal based on the detecting signal and an adjusting signal so that the secondary side current is gradually increased during a start period of the switching power converting apparatus.
Abstract:
A soft-start switching power converter includes a voltage converting circuit and a soft-start circuit. The voltage converting circuit includes a transformer, and a first switch which includes a first terminal connected to the transformer, a second terminal providing a trigger signal, and a control terminal receiving a control signal, and which is controlled to switch between conduction and nonconduction, such that the transformer generates a feedback voltage. The soft-start circuit receives the trigger signal, generates the control signal according to the trigger signal, and determines whether or not to clamp the control signal at a preset voltage level based on the trigger signal.
Abstract:
A power converter includes a rectifier and a power factor corrector. The rectifier is to be coupled to an alternating current power source and is configured to output a rectified signal. The power factor corrector includes a correcting circuit and a control circuit. The correcting circuit receives the rectified signal and is configured to generate an output voltage based on the rectified signal and a driving signal. The control circuit is configured to generate a first to-be-compared signal based on the rectified signal, to generate a second to-be-compared signal based on the output voltage, to compare the first and second to-be-compared signals, and to generate the driving signal based on a result of comparison performed thereby.
Abstract:
A switching power converting apparatus includes a voltage conversion module, a detecting unit, and a switching signal generating unit. The voltage conversion module converts an input voltage into an output voltage associated with a secondary side current, which flows through a secondary winding of a transformer and is generated based on a switching signal. The detecting unit generates a detecting signal based on the output voltage and a predetermined reference voltage. The switching signal generating unit generates the switching signal based on the detecting signal and an adjusting signal so that the secondary side current is gradually increased during a start period of the switching power converting apparatus.
Abstract:
A power converter includes a rectifier and a power factor corrector. The rectifier is to be coupled to an alternating current power source and is configured to output a rectified signal. The power factor corrector includes a correcting circuit and a control circuit. The correcting circuit receives the rectified signal and is configured to generate an output voltage based on the rectified signal and a driving signal. The control circuit is configured to generate a first to-be-compared signal based on the rectified signal, to generate a second to-be-compared signal based on the output voltage, to compare the first and second to-be-compared signals, and to generate the driving signal based on a result of comparison performed thereby.