摘要:
A polymer polyol composition comprising a continuous phase, a disperse phase within the continuous phase, and a dispersant to enhance the stability of the polymer polyol is disclosed. The dispersant is a grafted polyol-polyacrylate dispersant comprised of a isocyanate vinyl monomer/ethylenically unsaturated monomer random copolymer and a polyoxyalkylene polyether, wherein the random copolymer and the polyoxyalkylene polyether are connected through at least one urethane graft site.Methods of preparing the polymer polyol composition and the grafted polyol-polyacrylate dispersant are provided. The polymer polyol compositions have low viscosities as well as high stability and may be prepared with high levels of dispersed vinyl polymer and high styrene:acrylonitrile ratios in the dispersed vinyl polymer. The polymer polyol compositions are useful for the preparation of polyurethanes, particularly polyurethane foams.
摘要:
Novel polymer polyols based on halogenated aromatic monomers such as tribromostyrene give polyurethane foams with improved flame retardant properties. For example, replacing conventional SAN polymer polyols with tribromostyrene (TBS)/acrylonitrile polymer polyols allows the preparation of polyurethane foams passing British Standard 5852, Part 2, Ignition Source 5 Combustion Test and having better ASTM E-906 values without the need for solid fillers such as melamine or aluminum trihydrate, although these and other flame retardant additives may be optionally employed as well. Elimination of these fillers also provides other improvements such as superior strength and better compression set properties. The TBS dispersions may also be used in conjunction with melamine to eliminate the need for liquid fire retardant additives.
摘要:
A polymer polyol composition comprising a continuous phase, a disperse phase within the continuous phase, and a dispersant to enhance the stability of the polymer polyol is disclosed. The dispersant is a grafted polyol-polyacrylate dispersant comprised of a isocyanate vinyl monomer/ethylenically unsaturated monomer random copolymer and a polyoxyalkylene polyether, wherein the random copolymer and the polyoxyalkylene polyether are connected through at least one urethane graft site.Methods of preparing the polymer polyol composition and the grafted polyol-polyacrylate dispersant are provided. The polymer polyol compositions have low viscosities as well as high stability and may be prepared with high levels of dispersed vinyl polymer and high styrene:acrylonitrile ratios in the dispersed vinyl polymer. The polymer polyol compositions are useful for the preparation of polyurethanes, particularly polyurethane foams.
摘要:
A stable, low viscosity polymer polyol composition comprising a continuous phase, a disperse phase within the continuous phase, and a dispersant for enhancing the stability of the resultant polymer polyol is disclosed. In one embodiment, the dispersant is formed by polymerizing at least one acrylate monomer in a polyether polyol to form a single phase homogeneous liquid intermediate reaction product which is transesterified to form a polyol polyacrylate dispersant.
摘要:
Very low viscosity polymer polyols having high styrene/acrylonitrile ratios and good stability may be achieved by the use of epoxy resin-modified polyols as dispersants. The epoxy resin-modified polyols useful as dispersants may be made by reacting a polyol initiator having an active hydrogen functionality of 3 to 8 and one or more alkylene oxides with an epoxy resin. It is preferred that all of the epoxy resin-modified base polyol dispersant be initially charged to the reactor, along with part of the base polyol. In this invention, the base polyol is a conventional polyol unmodified with epoxy resin. The use of epoxy resin-modified polyols as dispersants results in polymer polyols having higher styrene contents, and improved stability and viscosity properties.
摘要:
The present invention provides a process for preparing a polymer polyol (PMPO) by alkoxylating a starter compound(s) having active hydrogen atoms in the presence of a double metal cyanide (DMC) catalyst, radical initiator(s) and optionally PMPO stabilizers and simultaneously polymerizing unsaturated monomer(s) with radical initiator(s). The polymer polyols (PMPOs) made by the inventive process may find use in the preparation of polyurethane foams and elastomers,
摘要:
The present invention provides a reaction system for the preparation of a fiber reinforced composite according to the pultrusion process made from continuous fiber reinforcing material and an immiscible polyurethane formulation containing a polyisocyanate component including at least one polyisocyanate and an isocyanate-reactive component including at least one isocyanate-reactive compound. The inventive polyurethane formulations and improved pultrusion processes offer better processing and may yield better reinforced composites.
摘要:
The present invention provides a reaction system for the preparation of a fiber reinforced composite according to the pultrusion process made from continuous fiber reinforcing material and a polyurethane formulation containing a polyisocyanate component including at least one polyisocyanate and an isocyanate-reactive component containing at least one double metal cyanide (“DMC”)-catalyzed polyol. The inventive polyurethane formulations and improved pultrusion processes offer better processing and may yield better reinforced composites.
摘要:
The present invention relates to a polyether carbonate polyol made by copolymerizing a starter molecule with carbon dioxide, at a pressure ranging from about 10 psia to about 2,000 psia, and an alkylene oxide, at a temperature ranging from about 50° C. to about 190° C. and in the presence of from about 0.001 wt. % to about 0.2 wt. % of a substantially non-crystalline double metal cyanide (DMC) catalyst, wherein the polyol has an incorporated carbon dioxide content of from about 1 wt. % to about 40 wt. %, wherein the ratio of cyclic carbonate by-product to total carbonate is less than about 0.3 and wherein the weight percentages are based on the weight of the polyol. The inventive polyether carbonate polyols may find use in producing polyurethane foams, elastomers, coatings, sealants and adhesives with improved properties.
摘要:
The present invention provides a reaction system for the preparation of a fiber reinforced composite according to the pultrusion process made from continuous fiber reinforcing material and a polyurethane formulation made from a polyisocyanate component containing at least one polyisocyanate and an isocyanate-reactive component containing at least one polymer polyol (“PMPO”). The inventive polyurethane formulations and improved pultrusion processes offer better processing and may yield better reinforced composites.