Abstract:
A module for a laboratory sample distribution system, a laboratory sample distribution system comprising such modules, and a laboratory automation system comprising such a laboratory sample distribution system are presented. A magnetic coupling enhancer is provided in order to increase magnetic coupling between adjacent modules.
Abstract:
A transport device for receiving a sample container and for transporting the sample container on a transport surface, the transport device being capable of being moved magnetically over the transport surface and, further, having a cooling device is presented. A sample distribution system comprising such a transport device and to a laboratory automation system is also presented.
Abstract:
A module for a laboratory sample distribution system, a laboratory sample distribution system comprising such modules, and a laboratory automation system comprising such a laboratory sample distribution system are presented. A magnetic coupling enhancer is provided in order to increase magnetic coupling between adjacent modules.
Abstract:
A laboratory cargo distribution system is presented. The laboratory cargo distribution system comprises a number of transport carriers, a transport plane, a number of electro-magnetic actuators, a storage device and a control device. The storage device is adapted to store at least one of the number of transport carriers. A laboratory automation system comprising such a laboratory cargo distribution system and a method of operating such a laboratory cargo distribution system are also presented.
Abstract:
A sample distribution system having a transport surface and sample container carriers arranged thereupon is disclosed. A dirt detection device for limiting the effect of dirt is provided.
Abstract:
A vertical conveying device for the transport of sample container carriers having sample tubes received therein between a bottom level and a top level of a sample distribution system is presented. The vertical conveying device comprises a plurality of conveying surfaces which are movable along a circulating path. A sample distribution system having such a vertical conveying device and to a laboratory automation system having such a sample distribution system are also presented.
Abstract:
A transport device for receiving a sample container and for transporting the sample container on a transport surface, the transport device being capable of being moved magnetically over the transport surface and, further, having a cooling device is presented. A sample distribution system comprising such a transport device and to a laboratory automation system is also presented.
Abstract:
A method of operating a laboratory sample distribution system is presented. The method comprises a number of sample container carriers on a transport plane by a number of electro-magnetic actuators. The method is adapted to compensate deviations regarding physical properties of the sample container carriers, the transport plane and the electro-magnetic actuators compared to reference components. A laboratory automation system comprising such a laboratory sample distribution system is also presented.
Abstract:
A laboratory sample distribution system having a recovery device and a laboratory automation system having such a laboratory sample distribution system are presented. The recovery device is adapted to manipulate items such as sample container carriers or sample containers on a transport plane of the laboratory sample distribution system in the case of an error condition.
Abstract:
A vertical conveying device for the transport of sample container carriers having sample tubes received therein between a bottom level and a top level of a sample distribution system is presented. The vertical conveying device comprises a plurality of conveying surfaces which are movable along a circulating path. A sample distribution system having such a vertical conveying device and to a laboratory automation system having such a sample distribution system are also presented.