Abstract:
Power conversion systems and methods to control a multiphase multilevel regenerative power converter with multilevel phase circuits that individually include multiple regenerative power stages with respective power stage outputs connected in series, each of the multiple regenerative power stages comprising a DC link circuit a switching rectifier coupled between a respective transformer secondary circuit and the DC link circuit, and a switching inverter coupled between the DC link circuit and the respective power stage output, including a controller that provides inverter switching control signals to control the respective switching inverters, provides rectifier switching control signals to control the respective switching rectifiers, and controls a non-zero phase relationship between the rectifier switching control signals of the respective switching rectifiers.
Abstract:
For power converter pre-charge with line synchronization, a method magnetizes a power transformer of a power converter with a supply voltage from a variable voltage variable frequency supply. The method pre-charges power cells of the power converter fed from the power transformer to a specified voltage with the supply voltage. The method further modifies a primary amplitude, a primary phase, and a primary frequency of a primary winding of the power converter with the supply voltage to match a main amplitude, a main phase, and a main frequency of a main voltage of a main power source. In response to matching the primary amplitude, the primary phase, and the primary frequency to the main amplitude, the main phase, and the main frequency, the method connects the main power source to the power transformer.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes first and second normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes first and second normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
Power conversion systems and methods to control a multiphase multilevel regenerative power converter with multilevel phase circuits that individually include multiple regenerative power stages with respective power stage outputs connected in series, each of the multiple regenerative power stages comprising a DC link circuit a switching rectifier coupled between a respective transformer secondary circuit and the DC link circuit, and a switching inverter coupled between the DC link circuit and the respective power stage output, including a controller that provides inverter switching control signals to control the respective switching inverters, provides rectifier switching control signals to control the respective switching rectifiers, and controls a non-zero phase relationship between the rectifier switching control signals of the respective switching rectifiers.
Abstract:
For a power supply with a reduced number of semiconductor devices, a transformer receives a three-phase primary voltage and steps the three-phase primary voltage up or down to a secondary voltage with a plurality of secondary winding sets to a plurality of first phase voltages, a plurality of second phase voltages, and a plurality of third phase voltages. A plurality of power cell sets each include a plurality of power cells cascaded connected. Each power cell comprises a rectifier and an inverter. The rectifier includes two first active switches that are serially connected and receive a phase voltage at a first switch midpoint, two second active switches that are serially connected and receive another phase voltage at a second switch midpoint, and two capacitors that are serially connected and receive another phase voltage at a capacitor midpoint between the capacitors.
Abstract:
Disclosed examples include methods, power converters and damping circuits to control damping of an input filter circuit, in which a low-voltage secondary winding is wound around a common core with a primary winding connected between an AC input and a rectifier input of the converter, where the secondary winding is coupled in a series circuit with a damping resistor and a switch, and a controller selectively closes the switch with a controlled on-time at system power up and/or in response to detection of oscillation or transients in the power converter.
Abstract:
Motor drive power conversion systems are provided including a rectifier and a switching inverter, wherein the switching devices of the rectifier, the inverter and/or of a DC/DC converter are silicon carbide switches, such as silicon carbide MOSFETs. Driver circuits are provided for providing bipolar gate drive signals to the silicon carbide MOSFETs, including providing negative gate-source voltage for controlling the off state of enhancement mode low side drivers and positive gate-source voltage for controlling the off state of enhancement mode high side drivers.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes one or more normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
A system is provided for driving multiple motors. The system includes multiple cascaded H-bridge (CHB) power inverters, a DC bus, and multiple neutral point converter/inverters. Each of the multiple CHB power inverters is connected to a respective motor at one or more AC terminals of the CHB power inverter. Each of the multiple CHB power inverters includes one or more DC terminals configured to receive DC power. Each of the multiple neutral point converter/inverters is connected to a respective CHB power inverter at one or more neutral terminals of the respective CHB power inverter and connected to the DC bus.