Abstract:
A power conversion system and controller configured to generate a real average DC current reference based on a DC bus voltage of a DC link circuit and a DC bus voltage setpoint, generate real and reactive ripple current references based on the DC bus voltage of the DC link circuit and a ripple angle of the DC link circuit, and generate rectifier switching control signals to operate rectifier switching devices based on the real average DC current reference and the real and reactive ripple current references.
Abstract:
For power conversion, a power conversion system includes a plurality of power converters and a phase shifting transformer. The phase shifting transformer includes 3-phase primary windings, a core and a plurality of m secondary winding groups. Each of the secondary winding groups includes n secondary windings in electromagnetic communication with a corresponding primary winding and feeding the plurality of power converters. Phase angle sets of the secondary winding groups are all different with a non-zero secondary winding phase shift between any two secondary winding groups.
Abstract:
Disclosed examples include methods, power converters and damping circuits to control damping of an input filter circuit, in which a low-voltage secondary winding is wound around a common core with a primary winding connected between an AC input and a rectifier input of the converter, where the secondary winding is coupled in a series circuit with a damping resistor and a switch, and a controller selectively closes the switch with a controlled on-time at system power up and/or in response to detection of oscillation or transients in the power converter.
Abstract:
Apparatus to provide bypass redundancy for a multiphase multilevel inverter including a spare inverter stage and a switch circuit to connect the spare inverter stage between a selected one of the inverter phase first nodes having a bypassed stage and a common connection node, and to connect the remaining inverter phase first nodes with the common connection node.
Abstract:
Cascade H-Bridge inverters and carrier-based level shift pulse width modulation techniques are presented for generating inverter stage switching control signals, in which carrier waveform levels are selectively shifted to control THD and to mitigate power distribution imbalances within multilevel inverter elements using either complementary carrier or complementary reference modulation techniques.
Abstract:
A component includes a power suspension module that suspends providing power from a DC source to a DC link capacitor and from the capacitor to a load. A bleeding resistor is connected in parallel with the capacitor and an auxiliary power supply draws power from the capacitor. The component includes a measurement module that measures a first, second and third capacitor voltage at a first, second, time, and third time in response suspending power between the DC source and the load. The component includes a capacitance module that uses bleeding resistor resistance, the voltages and the times to determine a current capacitance of the capacitor, a capacitance comparison module that compares the current capacitance with an initial capacitance of the capacitor, and an alert module that sends an alert in response to determining that a difference between the current capacitance and the initial capacitance is above a capacitance degradation threshold.
Abstract:
A system is provided for driving multiple motors. The system includes multiple cascaded H-bridge (CHB) power inverters, a DC bus, and multiple neutral point converter/inverters. Each of the multiple CHB power inverters is connected to a respective motor at one or more AC terminals of the CHB power inverter. Each of the multiple CHB power inverters includes one or more DC terminals configured to receive DC power. Each of the multiple neutral point converter/inverters is connected to a respective CHB power inverter at one or more neutral terminals of the respective CHB power inverter and connected to the DC bus.
Abstract:
A regenerative power conversion system with a phase shift transformer having a primary circuit and N secondary sets of M secondary circuits, a controller synchronizes rectifier switching control signals of individual regenerative power stages to a phase angle of a corresponding one of the secondary circuits based on a feedback signal of the primary circuit during regenerative operation of the power conversion system.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes first and second normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
Power converters are presented with one or more sparse multilevel actively clamped (SMAC) power converter stages, where the individual stages include an integer number N capacitors or DC voltage sources coupled between stage DC inputs to provide L=N+1 converter stage DC voltage nodes, with a switching circuit having no more than L*(L−1) switching devices and no flying or floating DC storage capacitors, where N is greater than 2.