摘要:
An apparatus for separating ions includes providing a FAIMS analyzer region defined by a space between a first electrode surface and a second electrode surface and extending between an ion inlet end and an ion outlet end. An asymmetric waveform is applied to the first electrode surface and a compensation voltage difference is applied between the first and second electrode surfaces. An output signal is provided from a temperature sensor, the output signal relating to a temperature within the FAIMS analyzer region. In dependence upon the output signal, the temperature within the FAIMS analyzer region is controllably affected. The apparatus supports operation of FAIMS at temperatures different from the temperature of other components in a tandem multi-stage system, and supports the stable operation of FAIMS at different temperatures which increases the separation capability of FAIMS.
摘要:
An apparatus for separating ions includes providing a FAIMS analyzer region defined by a space between a first electrode surface and a second electrode surface and extending between an ion inlet end and an ion outlet end. An asymmetric waveform is applied to the first electrode surface and a compensation voltage difference is applied between the first and second electrode surfaces. An output signal is provided from a temperature sensor, the output signal relating to a temperature within the FAIMS analyzer region. In dependence upon the output signal, the temperature within the FAIMS analyzer region is controllably affected. The apparatus supports operation of FAIMS at temperatures different from the temperature of other components in a tandem multi-stage system, and supports the stable operation of FAIMS at different temperatures which increases the separation capability of FAIMS.
摘要:
An apparatus for multiple nano-spray delivery of a sample to FAIMS analyzer includes a micro-machined ionization source having a plurality of discrete nozzles. At least some of the discrete nozzles of the plurality are aligned one each with an ion inlet of a plurality of discrete ion inlets of the FAIMS, so that ions produced at different discrete nozzles are introduced into different portions of the FAIMS analyzer region. The ions that are introduced via each ion inlet are at least partly separated prior to adding/mixing with the ions introduced via other ion inlets. This reduces the problems of ion-ion electric repulsions that occur when ion density is high.
摘要:
A method of transmitting ions along an analyzer region between closely spaced electrodes is disclosed. The method includes providing an analyzer region for transmitting ions, the analyzer region in fluid communication with an ionization source and with an ion detecting device. The method further includes affecting a pressure within at least one portion of the analyzer region, to differ from the pressure within another part of the analyzer region, and providing an electric field that is synchronized with the pressure differences to focus the ions.
摘要:
A method of separating ions includes providing a FAIMS analyzer region for separating ions, the FAIMS analyzer region in fluid communication with an ionization source and with an ion detecting device. The method further includes affecting a gas composition within a first portion of the FAIMS analyzer region to be different from a gas composition within a second portion of the FAIMS analyzer region. The establishment of a gas composition gradient within the FAIMS analyzer region enhances ion focusing and ion transport efficiency.
摘要:
A method of separating ions, including a first species of ion and a second species of ion that are transmitted through an analyzer region under substantially identical electrical field conditions, is provided. The method includes separating ions within an analyzer region according to the FAIMS principle, such that the first species of ion and the second species of ion are selectively transmitted along a time-averaged first direction through a portion of the analyzer region between the ion origin end and the ion detection end. Subsequently, the first species of ion and the second species of ion within the analyzer region are separated according to a difference in low field ion mobility values, such that relatively more of one of the first species of ion and the second species of ion is transmitted to an ion detection end than is transmitted absent separating the first species of ion and the second species of ion within the analyzer region according to a difference in their low field ion mobility values. The ions are transmitted through the remainder of the analyzer region under normal FAIMS operating conditions.
摘要:
Disclosed is an apparatus for separating ions including a plurality of first electrode portions, each first electrode portion of the plurality of first electrode portions having a first length and an outer surface that is at least partially curved in a direction transverse to the first length. The apparatus also includes a plurality of second electrode portions arranged in an alternating sequence with the plurality of first electrode portions, each second electrode portion of the plurality of second electrode portions having a second length and an outer surface that is curved in a direction transverse to the second length, a space between the outer surface of a first electrode portion and the outer surface of an adjacent second electrode portion defining a portion of an analytical gap for separating ions. At least an electrical controller is provided for electrically coupling to at least one of the plurality of first electrode portions and the plurality of second electrode portions, for applying an asymmetric waveform voltage between the at least one of the plurality of first electrode portions and the plurality of second electrode portions and for applying a direct current voltage between the at least one of the plurality of first electrode portions and the plurality of second electrode portions so as to establish an electric field within the portion of the analytical gap. During use, ions propagating along a direction that is transverse to both the first length and the second length are separated in the portion of the analytical gap between the outer surface of the first electrode portion and the outer surface of the adjacent second electrode portion.
摘要:
Disclosed is a method of controlling an asymmetric waveform generated as a combination of two sinusoidal waves having a frequency that differs by a factor of two. A method according to the instant invention includes a step of sampling a generated asymmetric waveform to obtain a set of data points, the set of data points being indicative of the generated asymmetric waveform. The sampled data points are arranged in an order according to magnitude, and then compared to template data relating to a desired asymmetric waveform. In dependence upon the comparison, a correction to the generated asymmetric waveform is determined.
摘要:
A method of controlling an asymmetric waveform that is generated as a combination of a plurality of sinusoidal waves, including two sinusoidal waves having a frequency that differs by a factor of two. The method includes the steps of sampling the generated asymmetric waveform to obtain a set of data points that is indicative of the generated asymmetric waveform. Each data point of the set of data points normalized. The method further includes the steps of determining at least a value relating to the normalized data points of comparing the determined at least a value to template data relating to an ideal asymmetric waveform, and of effecting a change to the generated asymmetric waveform in dependence upon the comparison.
摘要:
A high field asymmetric waveform ion mobility spectrometer (FAIMS) for separating ions, and a method therefore. The FAIMS includes an electrode stack (24) having a length and comprising a plurality of electrodes (26, 28). Each electrode of the electrode stack is spaced apart from an adjacent electrode in a direction along the length of the electrode stack, and each electrode of the electrode stack has an edge that defines a portion of an edge of the electrode stack. At least an electrode (22) is spaced apart from the edge of the electrode stack in a direction approximately transverse to the length of the electrode stack, the space between the at least an electrode and the edge of the electrode stack defines an analytical gap (20) for allowing ions to propagate therebetween. Ions are separated as they move through an electric field within the analytical gap resulting from the application of an asymmetric waveform voltage to alternate electrodes of the electrode stack and application of a direct current voltage to at least some of the electrodes of the electrode stack and to the at least an electrode.