Abstract:
An offset calculation circuit comprising a data obtaining unit for sequentially obtaining two-axis or three-axis magnetic detection data as a set of data points of a two-axis coordinate system or a three-axis coordinate system; an offset recording unit for recording offset components of the magnetic detection data as an offset point of the two-axis coordinate system or the three-axis coordinate system; and an offset calculation unit for calculating a first reference line or a first reference plane put between first and second data points among the set of data points, and subsequently moving the offset point recorded in the offset recording unit in a direction toward the first reference line or the first reference plane to calculate a first offset candidate point.
Abstract:
A side surface type optical semiconductor device includes a substrate made of an insulating material and having a main surface and a back surface, which face opposite sides to each other in a thickness direction. The substrate includes a first concave portion recessed in the thickness direction and a second concave portion recessed further toward the back surface than the first concave portion, a semiconductor optical element is disposed across the first concave portion and the second concave portion, a hollow portion is formed between the semiconductor optical element and the second concave portion, and the hollow portion is used as a light guide path of the semiconductor optical element.
Abstract:
A pulse wave sensor includes: a white LED emitting white light to a human body; a G sensor converting, into a first electrical signal, green light included in light emitted from the white LED and reflected within the human body; an R sensor converting, into a second electrical signal, red light included in the light emitted from the white LED and reflected within the human body; and an arithmetic control unit configured to generate a signal showing a heart rate based on a level difference between the first electrical signal and the second electrical signal. Therefore, a distance between the G sensor and the R sensor does not have to be increased, so that an apparatus can be reduced in size.
Abstract:
The living body information sensor according to the present invention can be attached to a living body. A light emitting unit emits light to the living body. The light receiving unit receives reflected light from the living body that is included in the light emitted by the light emitting unit to the living body, and outputs a signal according to intensity of the reflected light. A control device generates information about the living body based on the signal from the light receiving unit. The control device controls the light emitting unit to turn on and off in an alternate manner. The control device sets a total of a turn-on time of the light emitting unit in a prescribed time interval to be smaller when the living body information sensor is attached to the living body than when the living body information sensor is not attached to the living body.
Abstract:
A pulse wave sensor includes: a white LED emitting white light to a human body; a G sensor converting, into a first electrical signal, green light included in light emitted from the white LED and reflected within the human body; an R sensor converting, into a second electrical signal, red light included in the light emitted from the white LED and reflected within the human body; and an arithmetic control unit configured to generate a signal showing a heart rate based on a level difference between the first electrical signal and the second electrical signal. Therefore, a distance between the G sensor and the R sensor does not have to be increased, so that an apparatus can be reduced in size.
Abstract:
There is provided a lens control device that feeds a motor current to a lens drive motor which drives lens according to the motor current, the lens control device including: a servo computation portion that calculates a motor current setting value such that a deviation of the position of the lens from a target position to which a correction offset has been added is reduced; a motor driver that generates the motor current according to the motor current setting value; and a calibration computation portion that adjusts the correction offset such that an average value of the motor current approaches zero.
Abstract:
There is provided a lens control device that feeds a motor current to a lens drive motor which drives lens according to the motor current, the lens control device including: a servo computation portion that calculates a motor current setting value such that a deviation of the position of the lens to which a correction offset has been adjusted from a target position is reduced; a motor driver that generates the motor current according to the motor current setting value; and a calibration computation portion that adjusts the correction offset such that an average value of the motor current approaches zero.