Abstract:
The present invention provides a light receiving IC, a proximity sensor and an electronic machine capable of expanding a display area of an electronic machine having a proximity sensor.A light receiving IC (11) includes: a driving portion, driving an LED (21) that emits light; and a light receiving element (34), detecting reflected light. The light receiving IC (11) is disposed in a region that is under an OLED panel (5) and is covered by the OLED panel (5).
Abstract:
Disclosed is a mobile device comprising an acceleration detection unit for detecting acceleration relative to the device; a condition identification unit; and a power supply controller which determines, from a combination of the output of the acceleration detection unit and the output of the condition identification unit, whether or not to begin to supply power to the device.
Abstract:
A proximity sensor includes: a support substrate having a main surface and a rear surface; a surface emission laser; a light receiving part; and a resin body, wherein the surface emission laser is disposed on the main surface so as to emit light in a direction away from the rear surface; wherein the resin body is made of a light transmissive resin, and is disposed on the main surface so as to cover the surface emission laser and the light receiving part, and a portion of the resin body between the surface emission laser and the light receiving part is formed of the same light transmissive resin as the other portions, and wherein the light receiving part is disposed at a position at which the light emitted from the surface emission laser is reflected at an object and reflected light from the object is incident onto the light receiving part.
Abstract:
A visible light communication system comprising a first electronic device having a display part and a second electronic device 20 having a brightness sensor, visible light communication between the first electronic device and the second electronic device occurring as a result of the brightness sensor detecting visible light (solid arrow) output from the display part.
Abstract:
A photodetection device of the present invention includes a semiconductor substrate which is defined such that a first light-receiving portion and a second light-receiving portion are spaced from one another, and an optical filter which is formed on the semiconductor substrate, and includes a first filter which is disposed so as to cover the first light-receiving portion, to selectively allow an optic element in a first wavelength band to transmit through, and a second filter which is disposed so as to cover the second light-receiving portion, to selectively allow an optic element in a second wavelength band different from the first wavelength band, to transmit through, and the optical filter has a filter laminated structure which is defined such that edge portions of the first filter and the second filter overlap one another on a boundary region between the first light-receiving portion and the second light-receiving portion.
Abstract:
Disclosed is a mobile device comprising an acceleration detection unit for detecting acceleration relative to the device; a condition identification unit; and a power supply controller which determines, from a combination of the output of the acceleration detection unit and the output of the condition identification unit, whether or not to begin to supply power to the device.
Abstract:
In an illuminance sensor, a slow axis of a first quarter-wave plate has a relation of +45° or −45° in regard to a polarization direction of a first linear polarization plate; a relation of a slow axis of a first portion of a second quarter-wave plate in regard to a polarization direction of a second linear polarization plate is the same with relation of the slow axis of the first quarter-wave plate in regard to the polarization direction of the first linear polarization plate, that is, +45° or −45°; and a relation of a slow axis of a second portion of the second quarter plate in regard to the polarization direction of the second linear polarization plate is −45° or +45° that is opposite in sign to the relation of the slow axis of the first quarter-plate in regard to the polarization direction of the first linear polarization plate.
Abstract:
The present disclosure describes a light receiving IC, a proximity sensor and an electronic machine capable of expanding a display area of an electronic machine having a proximity sensor. A light receiving IC includes: a driving portion, driving an LED that emits light; and a light receiving element, detecting reflected light. The light receiving IC is disposed in a region that is under an OLED panel and is covered by the OLED panel.
Abstract:
An optical sensor includes a light receiving unit and a calculating unit. The light receiving unit includes a plurality of light receiving elements and a plurality of color filters. The plurality of light receiving elements include a first light receiving element and a second light receiving element through which a photocurrent flows when receiving light. The plurality of color filters include a yellow filter that covers a light receiving surface of the first light receiving element and a red filter that covers a light receiving surface of the second light receiving element. The calculating unit calculates an intensity of a yellow wavelength band based on a difference between a first output signal obtained from the photocurrent of the first light receiving element and a second output signal obtained from the photocurrent of the second light receiving element.
Abstract:
The present disclosure relates to a proximity sensor capable of further alleviating crosstalk and an electronic device using the same.A proximity sensor of the present disclosure includes: a substrate including a main surface; a light emitter and a light receiver disposed on the main surface; and a resin disposed on the main surface, enclosing the light emitter and the light receiver, and including a boundary surface spaced apart from the main surface; a first crosstalk alleviator disposed on the boundary surface and including a first inclined surface; and a second crosstalk alleviator disposed on the boundary surface and including a second inclined surface.