Abstract:
Embodiments of the present invention relate to an electromagnetic wave beam splitter, comprising a functional layer made of at least one metamaterial sheet, wherein different metamaterial sheets have the same refractive index distribution; the metamaterial sheet may be divided into a circular region and an annular region concentric to the circular region; a refractive index increases continuously as a radius increases and refractive indices at the same radius are the same within the circular region; and a refractive index decreases continuously as a radius increases and refractive indices are the same at the same radius within the annular region. The circular region of the functional layer of the beam splitter according to the present invention has the function of diverging an electromagnetic wave; the annular region has the function of converging an electromagnetic wave; the electromagnetic wave incident on the circular region of the functional layer deflects toward edges on two sides of the functional layer respectively; the electromagnetic wave incident on the annular region deflects in a direction toward a circle center; and after an electromagnetic wave emitted by a signal source is incident on the beam splitter, an emergent electromagnetic wave forms an annular radiation region. This can satisfy the requirements of, for example, avoiding an obstacle and interference.
Abstract:
The present disclosure relates to a metamaterial for diverging an electromagnetic wave, which comprises at least one metamaterial sheet layer. Refractive indices of the metamaterial sheet layer are distributed in a circular form with a center of the metamaterial sheet layer, and the refractive indices remain unchanged at a same radius and increase gradually with the radius. The present disclosure changes electromagnetic parameters at each point of the metamaterial through punching or by attaching man-made microstructures so that the electromagnetic wave can be diverged after passing through the metamaterial. The metamaterial of the present disclosure features a simple manufacturing process and a low cost, and is easy to be implemented. Moreover, the metamaterial of the present disclosure has small dimensions and does not occupy a large space, so it is easy to miniaturize apparatuses made of the metamaterial of the present disclosure.
Abstract:
The present invention relates to a man-made composite material and a man-made composite material antenna. The man-made composite material is disposed in a propagation direction of a plane electromagnetic wave and convert it into a spherical wave. Reverse extensions of the spherical wave intersect at a virtual focus. A line connecting the virtual focus to a point on the second surface of the man-made composite material and a line perpendicular to the man-made composite material form an angle θ therebetween, which uniquely corresponds to a curved surface in the man-made composite material. A set formed by points having the same angle θ forms a boundary of the curved surface to which the angle θ uniquely corresponds. Each point on the curved surface to which the angle θ uniquely corresponds has a same refractive index. Refractive indices of the man-made composite material increase gradually as the angle θ increases.
Abstract:
The present invention discloses a Cassegrain satellite television antenna comprising a metamaterial plate. The metamaterial plate comprises a core layer. The core layer comprises core sublayers. Each core sublayer comprises a circular area and a plurality of annuli distributed around the circular area. According to the Cassegrain satellite television antenna of the present invention, the traditional parabolic antenna is replaced with a sheet-like metamaterial plate which is easier to process and has a lower cost. In addition, the present invention also provides a satellite television receiving system equipped with the above-mentioned Cassegrain satellite television antenna.
Abstract:
An impedance matching component is disclosed. The impedance matching component is disposed on and closely attached to a first side surface of a function dielectric sheet. The impedance matching component comprises a first plurality of impedance matching layers, each of which has a refractive index distribution represented as follows: n i ( r ) = n m i n × ( n g ( r ) n m i n ) i c + 1 ; where, i represents a serial number of each of the impedance matching layers and is a positive integer; ni(r) represents refractive indices of points in the ith impedance matching layer that have a distance of r from a center of the ith impedance matching layer; ng(r) represents refractive indices of points in the function dielectric sheet that have a distance of r from a center of the function dielectric sheet; nmin represents the minimum refractive index of the function dielectric sheet; and c represents the number of the impedance matching layers.
Abstract:
A front feed microwave antenna, which comprises a radiation source, a first metamaterial panel used for radiating an electromagnetic wave emitted by the radiation source, a second metamaterial panel, and a reflective panel affixed to the back of the first metamaterial panel. The electromagnetic wave is emitted via the first metamaterial panel, refracted by entering the second metamaterial panel, reflected by the reflective panel, and finally re-refracted by reentering the second metamaterial panel, then finally parallel-emitted. Employment of the principle of metamaterial for manufacturing the antenna allows the antenna to break away from restrictions of conventional concave lens shape, convex lens shape, and parabolic shape, thereby allowing the shape of the antenna to be panel-shaped or any shape as desired, while allowing for reduced thickness, reduced size, facilitated processing and manufacturing, reduced costs, and improved gain effect.
Abstract:
The present invention relates to a man-made composite material and a man-made composite material antenna. The man-made composite material is divided into a plurality of regions. An electromagnetic wave is incident on a first surface exits from a second surface of the man-made composite material opposite to the first surface. A line connecting a radiation source to a point on the bottom surface of the ith region and a line perpendicular to the man-made composite material form an angle θ therebetween, which uniquely corresponds to a curved surface in the ith region. A set formed by points on the bottom surface of the ith region that have the same angle θ forms a boundary of the curved surface to which the angle θ uniquely corresponds. The refraction, diffraction and reflection of the present invention at the abrupt transition points can be reduced.
Abstract:
The present invention relates to a metamaterial and a metamaterial antenna. The metamaterial is disposed in a propagation direction of the electromagnetic waves emitted from a radiation source. A line connecting the radiation source to a point on a first surface of the metamaterial and a line perpendicular to the metamaterial form an angle θ therebetween, which uniquely corresponds to a curved surface in the metamaterial. Each point on the curved surface to which the angle θ uniquely corresponds has a same refractive index. Refractive indices of the metamaterial decrease gradually as the angle θ increases. The electromagnetic waves propagating through the metamaterial exits in parallel from a second surface of the metamaterial. The refraction, diffraction and reflection at the abrupt transition points can be significantly reduced in the present disclosure and the problems caused by interferences are eased, which further improves performances of the metamaterial and the metamaterial antenna.
Abstract:
Embodiments of the present disclosure relate to an impedance matching component and a hybrid wave-absorbing material. The impedance matching component is disposed between a first medium and a second medium, and comprises a plurality of functional sheet layers. Impedances of the functional sheet layers vary continuously in a stacking direction of the functional sheet layers, with the impedance of a first one of the functional sheet layers being identical to that of the first medium and the impedance of a last one of the functional sheet layers being identical to that of the second medium.
Abstract:
The disclosure relates to a metamaterial antenna, where the metamaterial antenna includes an enclosure, a feed, a first metamaterial that clings to an aperture edge of the feed, a second metamaterial that is separated by a preset distance from the first metamaterial and is set oppositely, and a third metamaterial that clings to an edge of the second metamaterial, where the enclosure, the feed, the first metamaterial, the second metamaterial, and the third metamaterial make up a closed cavity; and a central axis of the feed penetrates center points of the first metamaterial and the second metamaterial; and a reflection layer for reflecting an electromagnetic wave is set on surfaces of the first metamaterial and the second metamaterial, where the surfaces are located outside the cavity.