Abstract:
When compound semiconductor films are grown on an InP wafer having a surface near a (100) orientation hillocks tend to arise on the films. Off-angle wafers have been adopted for substrates in order to suppress the occurrence of hillocks. The off-angle .THETA. from a (100) plane, however, is not the sole factor for determing wheather hillocks will be formed on the film. There is a concealed parameter which determines the generation of hillocks. What induces hillocks on the growing film are the defects on the substrate itself. No hillocks originate on portions of the film that correspond to the portions of the InP wafer without dislocations. The role of the off-angle .THETA. of the substrate is preventing the influence of the dislocations from transmitting to the films. A smaller density D of the defects on the substrate allows a smaller off-angle .THETA. for suppressing the hillocks from arising. A larger density D of the defects demands a larger off-angle for the substrate so as to prevents the hillocks from originating. An inequality .THETA..ltoreq.1.times.10.sup.-3 D.sup.1/2 allows calculation of the off-angle .THETA. for preventing hillocks. More precisely, the inequlity is expressed as .THETA..ltoreq.1.26.times.10.sup.-3 D.sup.1/2.
Abstract:
A method for storing a semiconductor substrate preserves the semiconductor substrate at a temperature not more than 10.degree. C. in a sealed manner. After the surface of the semiconductor substrate has been cleaned by etching or the like, the semiconductor substrate is put in a bag of a synthetic resin sheet. An inert gas is introduced into the bag or the bag is brought into a vacuum state, the bag is sealed, and then maintained at the above temperature, whereby the cleaned surface is not recontaminated for a prolonged period of time.