Abstract:
A display device may include a first electrode, a second electrode, an emission layer, an intervening layer, and a first encapsulation layer. The second electrode may overlap the first electrode. The emission layer may be disposed between the first electrode and the second electrode, may overlap the first electrode, and may include a light emitting material. The intervening layer may directly contact the second electrode, may be spaced from each of the first electrode and the emission layer, and may include a fluorine compound. A first section of the first encapsulation layer may overlap the emission layer. The intervening layer may be positioned between the second electrode and a second section of the first encapsulation layer.
Abstract:
Disclosed is an organic light emitting diode, including a cathode electrode and an anode electrode positioned above the cathode electrode. An emitting layer is positioned between the cathode electrode and the anode electrode. An electron transporting unit is positioned between the cathode electrode and the emitting layer. The electron transporting unit is configured to inject and transport electrons to the emitting layer. A buffer layer is disposed between the cathode electrode and the electron transporting unit. The buffer layer includes an organic layer and a metallic layer disposed on the organic layer.
Abstract:
Disclosed are an organic light emitting diode display and a method for manufacturing the same. The organic light emitting diode display includes: a driving switching element; a pixel electrode connected with the driving switching element; an auxiliary electrode separated from the pixel electrode and positioned in a same layer as the pixel electrode; an organic common layer positioned on the pixel electrode and the auxiliary electrode and including a contact hole positioned on the auxiliary electrode; and a common electrode positioned on the organic common layer and connected with the auxiliary electrode through the contact hole; and the auxiliary electrode includes a light absorbing layer.
Abstract:
A donor substrate includes a base substrate; a light reflection layer disposed on the base substrate and overlapped with a portion of the base substrate, a heat blocking pattern disposed on the light reflection layer, overlapped with the light reflection layer, and including a plurality of air holes; a light-to-heat conversion layer disposed on the base substrate; and a transfer layer disposed on the light-to-heat conversion layer.
Abstract:
A display device includes: a first pixel electrode on a substrate; a pixel defining layer on the substrate and exposing the first pixel electrode; a first light emitting layer on the first pixel electrode; a first common electrode on the first light emitting layer; a first bank on the pixel defining layer; a second bank on the first bank and including side surfaces protruding more than side surfaces of the first bank; and a third bank on upper and lower surfaces of the second bank and including a hydrophobic material.
Abstract:
A display device includes: a substrate including a display area and a non-display area; an external common voltage line disposed in the non-display area; a common voltage line disposed in the display area and connected to the external common voltage line; a plurality of pixels positioned in the display area, each of which includes a first electrode and an emission layer; and a second electrode positioned on the pixels. The common voltage line has a multi-layered structure including a first layer, a second layer, and a third layer, the second layer defines an undercut structure therein, a width of the second layer is narrower than a width of each of the first layer and the third layer, and a length of an undercut of the undercut structure is greater than a thickness of the common voltage line.
Abstract:
A display device includes a pixel electrode, a pixel defining layer disposed on the pixel electrode and forming an opening which exposes a portion of the pixel electrode, an auxiliary electrode disposed on the pixel defining layer and the pixel electrode, an intermediate layer disposed on the pixel defining layer and the auxiliary electrode and a common electrode disposed on the intermediate layer. The pixel defining layer includes a recessed portion recessed into the pixel defining layer, the auxiliary electrode includes a first undercut forming portion disposed on the recessed portion and contacting the portion of the pixel electrode, and the intermediate layer includes a hole injection layer, a light-emitting layer and an electron injection layer stacked sequentially. The hole injection layer includes a first portion disposed on the first undercut forming portion and a second portion separated from the first portion and disposed on the recessed portion.
Abstract:
A display device includes a thin-film transistor, a source/drain electrode and an auxiliary electrode including a first conductive layer and a second conductive layer disposed on the first conductive layer, a via insulating layer having a first opening exposing the auxiliary electrode, a capping layer covering a portion of the auxiliary electrode and a light emitting material layer and a common electrode layer sequentially stacked on the via insulating layer and the capping layer, wherein the source/drain electrode is electrically connected to the thin-film transistor through a contact hole penetrating the interlayer insulating layer, the auxiliary electrode has an undercut, and the capping layer includes a first capping layer covering side surfaces of the first conductive layer of the auxiliary electrode and a second capping layer separated from the first capping layer and disposed on the second conductive layer of the auxiliary electrode.
Abstract:
A display device and a manufacturing method of a display device are provided. A display device includes: a substrate; a semiconductor layer on the substrate; a source electrode and a drain electrode on the semiconductor layer; an auxiliary electrode on a same layer as the source electrode and the drain electrode; a first electrode electrically connected with the source electrode or the drain electrode; a light emitting element layer on the first electrode; and a second electrode on the light emitting element layer, and the auxiliary electrode includes at least one groove located inside the auxiliary electrode.
Abstract:
An optical mask includes a light-to-heat conversion layer with an improved temperature profile. The optical masks may comprise a light-transmitting base substrate; a first reflective pattern layer which is formed on the light-transmitting base substrate comprising a first opening portion transmitting light emitted from under the light-transmitting base substrate and a first reflective portion reflecting the light; a second reflective pattern layer which is formed over the first opening portion comprising a second opening portion overlapping a first area of the first opening portion and a second reflective portion overlapping a second area of the first opening portion; and a light-to-heat conversion pattern layer which is formed on the light-transmitting base substrate, being disposed in the first area of the first opening portion, absorbing at least a part of the light, and converting the light absorbed into heat.