Abstract:
A recording medium according to one embodiment of the present disclosure includes a recording layer and an optical thin film. The recording layer includes a heat-sensitive color-developing composition and a photothermal conversion material. The photothermal conversion material absorbs a wavelength in an infrared region and generates heat. The optical thin film is provided on one surface of the recording layer. The optical thin film reflects the wavelength in the infrared region and transmits a wavelength in a visible region.
Abstract:
A dyeing base body to be used in a dyeing step of dyeing a resin body by heating a sublimable dye attached to the dyeing base body by electromagnetic waves to sublime the dye toward the resin body. The dyeing base body includes a metal base made in sheet form and an electromagnetic wave absorption layer formed on at least an opposite side to the side to which the dye will be attached. The electromagnetic wave absorption layer has a higher electromagnetic wave absorption rate than the base.
Abstract:
The present invention relates to a thermal transfer film comprising: a base layer; and a light-to-heat conversion layer which is laminated on top of the base layer and includes a first layer laminated on top of the base layer and a second layer laminated on top of the first layer in the thickness direction, wherein light-to-heat conversion materials are more omnipresent in the first layer than the second layer. The present invention also relates to an organic electroluminescent device prepared using said film.
Abstract:
The present invention relates to a thermal transfer film, a method for manufacturing the same, and an organic electroluminescent element manufactured by using the thermal transfer film, and the thermal transfer film comprises: a base film; a photothermal conversion layer formed on the upper part of the base film; and a coating layer formed on the lower part of the base film.
Abstract:
There is provided a thermal transfer recording medium capable of obtaining high transfer sensitivity during high-speed printing, that is, decreasing the amount of a dye used in a dye layer; and preventing abnormal transfer during printing even after storage in a high-temperature and high-humidity environment. The thermal transfer recording medium (1) contains: a heat-resistant sliding layer (40) that is formed on one surface of a substrate (10); and an undercoat layer (20) and a dye layer (30) that are sequentially laminated on the other surface of the substrate (10), in which the undercoat layer (20) contains, as major components, a polyvinyl pyrrolidone and a polyvinyl alcohol having a crystallinity degree of 15% or higher, and the dye layer (30) contains an anthraquinone-based thermal transfer dye.
Abstract:
Disclosed is a photoresist film including a light-to-heat conversion layer on a support film, and a thermo-responsive polymer layer on the light-to-heat conversion layer, wherein the photoresist film is easily detached from a transfer substrate through a temperature adjustment and detach film since the photoresist film includes thermo-responsive polymer.
Abstract:
Multi-layer articles are described that are capable of forming color images. The articles may contain at least two layers, a thermally activatable layer and a blocking layer, or at least three layers with two thermally activatable layers and a blocking layer between. The thermally activatable layers absorb light of a write wavelength and have an absorption threshold for activation. The blocking layer blocks light of the write wavelength at certain incident angles or polarization states and permits light of the write wavelength and certain incident angles or polarization states to pass through. The thermally activatable layers may be layers with a light to heat convertor composition and a color changing compound or they may be a group of layers arranged to change its reflective characteristic upon exposure to light while maintaining the structural integrity of the group of layers.
Abstract:
A donor substrate includes a base layer, a light-to-heat conversion layer disposed on the base layer, a metal particle layer disposed on the base layer and which discharges static electricity, and a transfer layer disposed on the light-to-heat conversion layer.
Abstract:
A donor film that is easily handled in a process without adding a separate member (such as a tray) when an organic thin film is formed on a substrate by using a thermal transfer method is disclosed. In addition, a method of manufacturing the donor film and a method of manufacturing an organic light-emitting device using the donor film are disclosed. The donor film includes: a base film; a light-to-heat conversion (LTHC) layer on the base film; an interlayer on the LTHC layer and that includes a transfer region and a first protrusion corresponding to at least one edge of the LTHC layer; and a transfer layer on the interlayer and including an organic light-emitting material. A rigidity of the first protrusion is higher than a rigidity of the transfer region.
Abstract:
There are disclosed imaging members wherein a chemical compound in a crystalline form is converted, at least partially, and preferably substantially completely or completely, to an amorphous form that has intrinsically a different color from the crystalline form. Also described are imaging methods utilizing the imaging members. The conversion of the compound from the crystalline form to an amorphous form can be effected by laser exposure.