Abstract:
A donor substrate includes a base substrate; a light reflection layer on the base substrate and partially overlapping the base substrate; a light-to-heat conversion layer on the base substrate, and including a combination layer including an insulating material and a first metal material; and a transfer layer on the light-to-heat conversion layer. A ratio of the first metal material in the combination layer to the insulating material in the combination layer increases as a distance from the base substrate increases along a thickness direction of the light-to-heat conversion layer.
Abstract:
According to an exemplary embodiment of the present disclosure, an organic light emitting element includes: a first electrode; a second electrode overlapping the first electrode; and an emission layer disposed between the first electrode and the second electrode, wherein at least one of the first electrode and the second electrode includes a metal layer including a first material, an oxidation layer including a second material and disposed on two opposing surfaces of the metal layer, and a barrier layer disposed at a surface of the oxidation layer, and the second material has a smaller Gibbs free energy than that of the first material.
Abstract:
An organic light emitting display panel and associated methods, the panel including a substrate; an organic light emitting diode (OLED) on the substrate; and an encapsulation member to separate the OLED from an external environment, wherein the OLED includes a first electrode on the substrate; a pixel defining layer exposing the first electrode and including a flat planar surface and an inclined planar surface extending from the flat planar surface such that the inclined planar surface overlaps an edge of the first electrode; an organic layer, the organic layer including a first region on the first electrode and a second region on the inclined planar surface; and a second electrode on the organic layer, and wherein, in the second region, a thickness of the organic layer is decreased along a direction extending away from the first region.
Abstract:
Embodiments of an optical mask include a base substrate having one surface and an opposed other surface; a reflection pattern layer formed on the one surface of the base substrate, the reflection pattern layer having one surface and an opposed other surface and including a cut portion which light radiated from the other surface of the base substrate penetrates and a reflection unit reflecting the light; and a photothermal conversion pattern layer in a region overlapped with the cut portion. The photothermal conversion pattern layer is divided into a first region having high light absorptance and a second region having lower light absorptance than the first region. The different regions of the photothermal conversion pattern layer absorb incident light and convert the absorbed light into heat to sublimate a transfer material at different rates. Differential optical absorptance is achieved with an offset interference, wherein the first region has a structure of a first metal layer, an oxide layer, and a second metal layer, and the second region uses fewer of these layers.
Abstract:
A display device includes a thin film transistor disposed on a base substrate, an insulation layer covering the thin film transistor, an organic light-emitting diode disposed on the insulation layer, a bus electrode and an organic fluoride pattern. The organic light-emitting diode includes a first electrode electrically connected to the thin film transistor, an organic light-emitting layer disposed on the first electrode, and a second electrode disposed on the organic light-emitting layer. The bus electrode is disposed on the second electrode. The organic fluoride pattern is disposed adjacent to the bus electrode.
Abstract:
A mask for forming a layer, a method of forming a layer, and a manufacturing method of an organic light-emitting diode (OLED) display are disclosed. In one aspect, the mask includes at least one light absorption portion and at least one reflection portion that are formed in a unit region, the unit region corresponding to a region where a continuous layer is formed, wherein the light absorption portion and the reflection portion in the unit region are formed at different areas from each other.
Abstract:
In a method and apparatus for manufacturing a donor substrate, a pattern layer which exposes a surface of a substrate is arranged on the substrate, and an organic material is deposited on the exposed surface of the substrate. The pattern layer includes a film pattern that defines a plurality of first openings and a photoresist pattern that is positioned on the film pattern and defines second openings, which correspond to the first openings, respectively, a minimum width of the second openings being smaller than that of the first openings.
Abstract:
Provided is a method of manufacturing a light-emitting display device. The method of manufacturing a light-emitting display device may comprise: forming a first electrode on a substrate, the substrate having a plurality of first pixel areas and a plurality of second pixel areas, the first electrode being formed in each of the first and second pixel areas such that corresponding first and second pixels are formed; forming a pixel defining layer on the substrate, the pixel defining layer having an opening exposing the first electrode of each of the first and second pixels; forming a first photoresist pattern on the pixel defining layer, the first photoresist pattern having a first pattern opening exposing the first electrode of each of the first pixels; forming a light-emitting layer on the first electrode exposed through the first pattern opening; and removing the first photoresist pattern.
Abstract:
Disclosed are an organic light emitting diode display and a method for manufacturing the same. The organic light emitting diode display includes: a driving switching element; a pixel electrode connected with the driving switching element; an auxiliary electrode separated from the pixel electrode and positioned in a same layer as the pixel electrode; an organic common layer positioned on the pixel electrode and the auxiliary electrode and including a contact hole positioned on the auxiliary electrode; and a common electrode positioned on the organic common layer and connected with the auxiliary electrode through the contact hole; and the auxiliary electrode includes a light absorbing layer.
Abstract:
A donor substrate includes a base substrate; a light reflection layer disposed on the base substrate and overlapped with a portion of the base substrate, a heat blocking pattern disposed on the light reflection layer, overlapped with the light reflection layer, and including a plurality of air holes; a light-to-heat conversion layer disposed on the base substrate; and a transfer layer disposed on the light-to-heat conversion layer.