Abstract:
The current application discloses compositions and methods for treating a subterranean formation. CO2 swellable elastomers can be used in a treatment fluid to at least partially block a high permeability region, therefore improving the performance of an operation such as matrix stimulation, acidizing, and acid fracturing.
Abstract:
Methods of treating a subterranean formation are disclosed that include introducing a treatment fluid including thermally shrinkable fibers and a particulate material into a subterranean formation via a wellbore, adjusting at least one parameter of the treatment fluid to trigger the association of the thermally shrinkable fibers, and forming a porous pack including a network of shrunken fibers by applying heat sufficient to raise the temperature of the thermally shrinkable fibers to a temperature at or above a shrinking initiation temperature of the thermally shrinkable fibers.
Abstract:
Fluid compositions comprising rigid fibers, flexible fibers and solid plugging particles may effectively control the egress of fluids from a subterranean wellbore into vugs, cracks and fissures in the subterranean formation rock. The compositions may be effective in drilling fluids, cement slurries, gravel packing fluids, acidizing fluids and hydraulic fracturing fluids. Such fluids may also have utility for providing fluid diversion during well stimulation treatments, allowing the stimulation fluid to avoid higher permeability regions in the formation rock and treat the lower permeability regions, thereby improving stimulation results.
Abstract:
A method to treat a subterranean formation penetrated by a wellbore, comprising: providing a treatment slurry comprising a carrying fluid, a solid particulate, an agglomerant and an agglomerant aid; injecting the treatment slurry into a fracture to form a mixture of the solid particulate and the agglomerant; and transforming the mixture into areas that are rich in solid particulate and areas that are substantially free of solid particulate. Also disclosed are a composition comprised of the carrying fluid, solid particulate, agglomerant and agglomerant aid, as well as a method of designing a well treatment therewith and a system to form conductive channels in a fracture.
Abstract:
A method of treating a subterranean formation penetrated by a wellbore is carried out by introducing an emulsion composition into the formation through the wellbore wherein the formation has a formation temperature surrounding the wellbore of at least 120° C. The emulsion composition is formed from an aqueous acid component that forms an internal phase of the emulsion, non-aqueous component that forms an external phase of the emulsion, and a surfactant. The emulsion composition also includes an amount of fibers formed from high temperature polymer material. The high temperature polymer material is characterized by the property of not substantially degrading in water at pH
Abstract:
A method of treating a subterranean formation penetrated by a wellbore comprising injecting electrically conductive or electromagnetic fibers into the subterranean formation during hydraulic fracturing is provided. Suitable metallic materials, organic polymers, and organic polymers coated with or containing conductive or electromagnetic materials are described. The treatment is followed by measurement of resistivity and/or electromagnetic properties, optionally by a crosswell technique.
Abstract:
Treatment fluids containing salts, surfactants, mutual solvents and fibers may be used to remove wellbore filter cakes that have been deposited by drilling fluids. The drilling fluids may be water-base, oil-base, synthetic-base or emulsions. The fibers may be selected from polylactic acid, celluloses, polyesters, polyvinyl alcohols and polyethylene terephthalates. A combination of straight and crimped fibers is present in the treatment fluid.
Abstract:
Fibers are employed to improve proppant transport in low viscosity treatment fluids. The treatment fluids employ fibers to inhibit proppant settling without an unacceptable bridging tendency. The fibers are preferably crimped staple fibers having 1-10 crimps/cm of fiber length, a crimp angle between 45 and 160 degrees and a mean diameter between 8 and 40 microns.
Abstract:
Fluids containing surfactants and hydrophobic particles are effective media for cleaning non-aqueous fluids (NAFs) out of a subterranean wellbore. The fibers and surfactants are preferably added to a drilling fluid, a spacer fluid, a chemical wash, a cement slurry or combinations thereof. NAFs, such as an oil-base mud or a water-in-oil emulsion mud, are attracted to the fibers as the treatment fluid circulates in the wellbore.
Abstract:
A method of treating a subterranean formation penetrated by a wellbore comprising injecting electrically conductive or electromagnetic fibers into the subterranean formation during hydraulic fracturing is provided. Suitable metallic materials, organic polymers, and organic polymers coated with or containing conductive or electromagnetic materials are described. The treatment is followed by measurement of resistivity and/or electromagnetic properties, optionally by a crosswell technique.