Abstract:
A method of treating a subterranean formation penetrated by a wellbore comprising injecting electrically conductive or electromagnetic fibers into the subterranean formation during hydraulic fracturing is provided. Suitable metallic materials, organic polymers, and organic polymers coated with or containing conductive or electromagnetic materials are described. The treatment is followed by measurement of resistivity and/or electromagnetic properties, optionally by a crosswell technique.
Abstract:
A system and method for performing stimulation operations at a wellsite having a subterranean formation with of a reservoir therein is provided. The method involves generating a plurality of quality indicators from a plurality of logs, and combining the plurality of quality indicators to form a composite quality indicator. The plurality of stress blocks may then be merged using diversion criterion. The composite quality indicator may be combined with the merged stress blocks to form a combined stress and composite quality indicator, the combined stress and composite quality indicator comprising a plurality of blocks with boundaries therebetween. The method may further comprise defining stages along the combined stress and composite quality indicator based on the diverter-assisted stage classifications; and selectively positioning perforations in select stages based on the diverter-assisted stage classifications thereon.
Abstract:
Various methods for performing treatment operations at a wellsite having a subterranean formation with a reservoir therein are provided. The method involves introducing a treatment fluid comprised of at least a gas hydrate slurry to the subterranean formation.
Abstract:
A method of treating a subterranean formation penetrated by a wellbore comprising injecting electrically conductive or electromagnetic fibers into the subterranean formation during hydraulic fracturing is provided. Suitable metallic materials, organic polymers, and organic polymers coated with or containing conductive or electromagnetic materials are described. The treatment is followed by measurement of resistivity and/or electromagnetic properties, optionally by a crosswell technique.
Abstract:
Well completion techniques are disclosed that combine the creation of perforation clusters created using abrasive-jet perforation techniques with hydraulic fracturing techniques that include proppant pulsing through the clustered abrasive jet perforations. Both the abrasive-jet perforation and hydraulic fracturing with proppant pulsing may be carried out through coiled tubing.
Abstract:
Apparatus, systems, and methods in which a fracturing fluid source is in fluid communication with a wellbore extending into a subterranean formation. A compressor has an input in fluid communication with a natural gas source, and has an output in fluid communication with the wellbore. The compressor is operable to compress natural gas received at the input for delivery at the output. A liquefied gas source is also in fluid communication with the wellbore.
Abstract:
A system and method for performing stimulation operations at a wellsite having a subterranean formation with of a reservoir therein is provided. The method involves generating a plurality of quality indicators from a plurality of logs, and combining the plurality of quality indicators to form a composite quality indicator. The plurality of stress blocks may then be merged using diversion criterion. The composite quality indicator may be combined with the merged stress blocks to form a combined stress and composite quality indicator, the combined stress and composite quality indicator comprising a plurality of blocks with boundaries therebetween. The method may further comprise defining stages along the combined stress and composite quality indicator based on the diverter-assisted stage classifications; and selectively positioning perforations in select stages based on the diverter-assisted stage classifications thereon.
Abstract:
A system and method for performing stimulation operations at a wellsite having a subterranean formation with of a reservoir therein is provided. The method involves generating a plurality of quality indicators from a plurality of logs, and combining the plurality of quality indicators to form a composite quality indicator. The plurality of stress blocks may then be merged using diversion criterion. The composite quality indicator may be combined with the merged stress blocks to form a combined stress and composite quality indicator, the combined stress and composite quality indicator comprising a plurality of blocks with boundaries therebetween. The method may further comprise defining stages along the combined stress and composite quality indicator based on the diverter-assisted stage classifications; and selectively positioning perforations in select stages based on the diverter-assisted stage classifications thereon.
Abstract:
A method of heterogeneous proppant placement in a subterranean fracture is disclosed. The method comprises injecting well treatment fluid including proppant (16) and proppant-spacing filler material (18) through a wellbore (10) into the fracture (20), heterogeneously placing the proppant in the fracture in a plurality of proppant clusters or islands (22) spaced apart by the material (24), and removing the filler material (24) to form open channels (26) around the pillars (28). The filler material can be dissolvable particles, initially acting as a consolidator during placement of the proppant in the fracture, and later dissolving to leave flow channels between the proppant pillars. The well treatment fluid can include extrametrical materials to provide reinforcement and consolidation of the proppant and, additionally or alternatively, to inhibit settling of the proppant in the treatment fluid.
Abstract:
Apparatus, systems, and methods in which a fracturing fluid source is in fluid communication with a wellbore extending into a subterranean formation. A compressor has an input in fluid communication with a natural gas source, and has an output in fluid communication with the wellbore. The compressor is operable to compress natural gas received at the input for delivery at the output. A liquefied gas source is also in fluid communication with the wellbore.