Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
A scintillator package includes a housing, with a scintillator in the housing to scintillate when struck by radiation. A window seals an end of the housing to permit light emitted during a scintillation to exit the housing. The window comprises a radioactive material that is non-scintillating, and this radioactive material may be naturally occurring, such as lutetium.
Abstract:
An ion source includes a cathode emitting primary electrons, a cathode grid downstream of the cathode, a reflector electrode downstream of the cathode grid, a reflector grid radially inward of the reflector electrode, and an extractor electrode downstream of the reflector electrode. The cathode and the cathode grid have a voltage difference such that the electric field accelerates the primary electrons on a trajectory toward the extractor electrode. The reflector grid and the extractor electrode have a voltage difference such that the electric field repels the primary electrons on a trajectory away from the extractor electrode and toward the reflector electrode. The cathode and reflector electrode have a voltage difference such that some primary electrons strike the reflector electrode, creating secondary electrons. The reflector grid has a positive potential such that the electric field attracts the primary and secondary electrons into the ionization region where they interact with ionizable gas.
Abstract:
An ion source includes a cathode emitting primary electrons, a cathode grid downstream of the cathode, a reflector electrode downstream of the cathode grid, a reflector grid radially inward of the reflector electrode, and an extractor electrode downstream of the reflector electrode. The cathode and the cathode grid have a voltage difference such that the electric field accelerates the primary electrons on a trajectory toward the extractor electrode. The reflector grid and the extractor electrode have a voltage difference such that the electric field repels the primary electrons on a trajectory away from the extractor electrode and toward the reflector electrode. The cathode and reflector electrode have a voltage difference such that some primary electrons strike the reflector electrode, creating secondary electrons. The reflector grid has a positive potential such that the electric field attracts the primary and secondary electrons into the ionization region where they interact with ionizable gas.
Abstract:
An ion source includes a cathode to emit electrons, a cathode grid downstream of the cathode, a reflector electrode downstream of the cathode grid, reflector grid radially inward of the reflector electrode, and an extractor electrode downstream of the reflector electrode, the extractor electrode and cathode grid defining an ionization region therebetween. The cathode and the cathode grid have a first voltage difference such the electrons are accelerated through the cathode grid and into the ionization region on a trajectory toward the extractor electrode. The reflector grid and the extractor electrode have a second voltage difference less than the first voltage difference such that the electrons slow as they near the extractor electrode and are repelled on a trajectory toward the reflector electrode. The reflector electrode has a negative potential such that the electrons are repelled away from the reflector electrode and into the ionization region.
Abstract:
Systems, methods, and devices for inelastic gamma-ray logging are provided. In one embodiment, such a method includes emitting neutrons into a subterranean formation from a downhole tool to produce inelastic gamma-rays, detecting a portion of the inelastic gamma-rays that scatter back to the downhole tool to obtain an inelastic gamma-ray signal, and determining a property of the subterranean formation based at least in part on the inelastic gamma-ray signal. The inelastic gamma-ray signal may be substantially free of epithermal and thermal neutron capture background.
Abstract:
A radiation detector package includes a support apparatus at least part of which is constructed from a naturally occurring radioactive material. A scintillator is associated with the support apparatus. The support may include a detector housing carrying a photodetector and the scintillator, and the detector housing may be constructed from the naturally occurring radioactive material.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
A radiation generator may include a generator housing, a target electrode carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target electrode based upon an accelerating potential, and a suppressor electrode carried by the generator housing having an opening therein to permit passage of charged particles to the target electrode. A target extender electrode may be between the suppressor electrode and the target electrode and have an opening therein to permit passage of charged particles to the target. At least one voltage source may be coupled to the target electrode, the suppressor electrode, and the target extender electrode to cause the target electrode to have a voltage greater than a voltage of the suppressor electrode and to cause the target extender electrode to have a voltage greater than the voltage of the suppressor electrode.