Abstract:
Example methods and apparatus to determine downhole fluid parameters are disclosed herein. An example method includes determining a velocity of a portion of a downhole tool moving in a well and determining a response of a fluid sensor disposed on the portion of the downhole tool. The fluid sensor includes a resistance temperature detector at least partially immersed in a fluid in the well. The example method further includes determining a velocity of the fluid based the velocity of the portion of the downhole tool and the response of the fluid sensor.
Abstract:
Apparatus and methods for determining downhole fluid parameters are disclosed herein. An example method includes deploying a downhole apparatus into a wellbore. The downhole apparatus includes a sensor having a heater and a temperature sensor. The method also includes traversing the downhole apparatus through the wellbore and obtaining a first response with the sensor in a first position of the wellbore. The method also includes obtaining a second response with the sensor in a second position of wellbore and determining a presence of a boundary between the first and second positions based on the first and second responses.
Abstract:
A measurement device is configured in a shaped charge package to be utilized in a perforating gun section tool string. The measurement device may include for example thermal conductivity detectors (TCD) configured to measure fluid flow velocity and/or thermal characteristics of the flowing fluid. The measurement device may include for example a pair laterally spaced TCDs each having sensor faces positioned co-planar with a surface across which the fluid flows. The measurement device may include a recessed TCD, having a sensor face recessed below an opening in the exterior surface.
Abstract:
A method for sampling a downhole formation fluid includes pumping formation fluid into the flowline of a downhole sampling tool, measuring a saturation pressure of the formation fluid in the flowline while pumping, and adjusting the pumping rate such that the fluid pressure in the flowline remains within a predetermined threshold above the measured saturation pressure.
Abstract:
A method for sampling a downhole formation fluid that includes pumping formation fluid into the flowline of a downhole sampling tool. The method also includes measuring a saturation pressure of the formation fluid in the flowline while pumping, and adjusting the pumping rate such that the fluid pressure in the flowline remains within a predetermined threshold above the measured saturation pressure.
Abstract:
Example methods and apparatus to determine downhole fluid parameters are disclosed herein. An example method includes determining a velocity of a portion of a downhole tool moving in a well and determining a response of a fluid sensor disposed on the portion of the downhole tool. The fluid sensor includes a resistance temperature detector at least partially immersed in a fluid in the well. The example method further includes determining a velocity of the fluid based the velocity of the portion of the downhole tool and the response of the fluid sensor.
Abstract:
A method for sampling a downhole formation fluid includes pumping formation fluid into the flowline of a downhole sampling tool, measuring a saturation pressure of the formation fluid in the flowline while pumping, and adjusting the pumping rate such that the fluid pressure in the flowline remains within a predetermined threshold above the measured saturation pressure.
Abstract:
A method for determining a flow distribution in a formation having a wellbore formed therein comprises the steps of positioning a bottomhole assembly in a wellbore, the assembly including an injection port for dispensing a fluid, a first sensor disposed upwell from the injection port, and a second sensor disposed downwell from the injection port, wherein each of the sensors generates a feedback signal representing a flow rate of the fluid in a portion of the wellbore, determining an approximate depth of a portion of the bottomhole assembly in the wellbore, generating a data model based upon an instruction set, the data model representing flow characteristics of the fluid in the wellbore, wherein the data model is derived from the feedback signal and the approximate depth of the injection port, and analyzing the data model based upon an instruction set to extrapolate a characteristic of the formation.
Abstract:
Methods and apparatus for determining fluid characteristics are disclosed herein. An example apparatus includes a housing including an electrically insulating pane thermally insulated from the housing. The pane has an exterior surface to be disposed in a fluid and an interior surface to be isolated from the fluid. The example apparatus further includes a sensor including an electrical resistor coupled directly to the interior surface of the pane. The electrical resistor has an electrical resistance corresponding to a temperature of the electrical resistor.
Abstract:
Apparatus and methods for determining downhole fluid parameters are disclosed herein. An example method includes disposing a downhole tool in a well. The downhole tool has a sensor including a heater and a temperature sensor. The example method further includes flowing a fluid in the well. The example method also includes determining a first velocity of the fluid at a first depth via the sensor and, based on the first velocity of the fluid, a first parameter of the well at the first depth is determined.