Abstract:
There is provided a simple method for producing an exfoliated graphite derivative. A method for producing an exfoliated graphite derivative, comprising steps of providing a mixture comprising exfoliated graphite and a reactive compound to be grafted on the above exfoliated graphite by irradiation with active energy rays; and irradiating the above mixture with active energy rays to graft the above reactive compound on the above exfoliated graphite.
Abstract:
There is provided a method for efficiently and inexpensively providing a resin laminate having a foamed resin layer without using a bonding agent. The method for manufacturing a resin laminate includes the steps of: supplying a molten foamable resin composition 11 in a non-foamed state to a first manifold 4 of a multi-manifold mold 1; supplying a second resin composition 12 for forming a non-foamed resin layer to a second manifold 5; in the multi-manifold mold 1, extruding the foamable resin composition 11 from the first manifold 4 to a merging and laminating part 3 and releasing pressure to thereby cause foaming to form a foamed resin layer 11A; and, before solidification of the foamed resin layer 11, extruding a non-foamed resin layer 12A extruded from the second manifold 5 and laminating the non-foamed resin layer 12A to the foamed resin layer 11A.
Abstract:
Disclosed herein are: a method for producing a resin composite material in which a carbon material having a graphene structure is dispersed in a synthetic resin and which has high mechanical strength; and a resin composite material obtained by the method. More specifically, disclosed herein are: a method for producing a resin composite material in which a carbon material having a graphene structure is uniformly dispersed in a synthetic resin selected from the group consisting of a crystalline resin and an amorphous resin, the method comprising, when the synthetic resin is a crystalline resin, shear-kneading the crystalline resin and the carbon material with a shear-kneading device at a temperature lower than a melting point of the crystalline resin and, when the synthetic resin is an amorphous resin, shear-kneading the amorphous resin and the carbon material with a shear-kneading device at a temperature close to a Tg of the crystalline resin; and a resin composite material obtained by the production method.
Abstract:
A measurement tool includes: a measurement tool body including a sample collection unit for collecting a liquid sample by a capillary phenomenon, and a liquid feed channel; and a lid body attachable to and detachable from the measurement tool body. The liquid feed channel includes an upstream side channel and a downstream side channel. A space is defined, into which an upstream side end of the sample collection unit and a downstream side end of the upstream side channel open, when the lid body is attached to the measurement tool body. The downstream side channel is connected to a downstream side end of the sample collection unit. The space is open when the lid body is separated from the measurement tool body, and the space is closed and the upstream side channel and the sample collection unit are connected when the lid body is attached to the measurement tool body.
Abstract:
Provided is a micro-fluid chip that enables reducing contamination between branch channels, has a relatively simple channel structure and facilitates miniaturization. A micro-fluid chip (1) having a channel structure (3) through which a fluid is delivered, wherein the channel structure (3) includes: a main channel (4) having an inflow port (5) and an outflow port (6); a plurality of branch channels (11) to (13) connected to the main channel (4), each branch channel having an inflow end on a side connected to the main channel (4) and an outflow end that is an end portion on an opposite side to the inflow end; and a sub-branch channel (14) connected to the main channel (4) between at least one pair of adjacent branch channels (11) and (12) among the plurality of branch channels (11) to (13), the sub-branch channel (14) having an inflow end on a side connected to the main channel (4).
Abstract:
Provided is an implement for inspection capable of measuring the concentration of a test substance with high accuracy. The implement for inspection according to the present invention is an implement for inspection used for measuring the concentration of a test substance that includes a compound for reacting with a test substance to form a granular substance or a compound which is for being bound to the test substance and is a granular substance, and a wall portion having a periodic structure on its surface.
Abstract:
Provided is an implement for inspection capable of measuring the concentration of a test substance with high accuracy. The implement for inspection according to the present invention is an implement for inspection used for measuring the concentration of a test substance that includes a compound for reacting with a test substance to form a granular substance or a compound which is for being bound to the test substance and is a granular substance, and a wall portion having a periodic structure on its surface.
Abstract:
Provided is a micro fluid device capable of reliably performing measurement of a fluid into a branched flow path and dispensing of a predetermined amount of a fluid into a plurality of the branched flow paths. A micro fluid device is provided in which a micro flow path 11 has a main flow path 12 and branched flow paths 15 to 17, the main flow path 12 has a first expanded flow path portion 12d, the branched flow paths 15 to 17 have second expanded flow path portions 15c to 17c, and a difference (TB−TE) between a TB value as a T value in the branched flow path and a TE value as a T value in the main flow path is 5 or more, with respect to a T value represented by the following formula (1): T={1/(x2·R)}·(θ/90) Formula (1) where x is a flow path width at a starting point of the first, second expanded flow path portion; R is a radius of curvature of curved surface portion in the first, second expanded flow path portion; and θ indicates a central angle of a circular arc with a radius of curvature R having the starting point of the first, second expanded flow path portion and an end point of the expanded flow path portion as end portions.
Abstract:
Provided is a resin composite material having a small number of voids and excellent tenacity. The resin composite material may be one obtained by mixing a carbon material having a graphene structure and having a content of less than 1 weight % of a volatile component volatilizable at 200° C. and a thermoplastic resin. The resin composite material may be a resin composite material including a carbon material having a graphene structure and a thermoplastic resin, the resin composite material containing 5 parts by weight or more of the carbon material per 100 parts by weight of the thermoplastic resin and having a breaking strain of 50% or more as measured according to JIS K 7161.
Abstract:
Disclosed herein are: a method for producing a resin composite material in which a carbon material having a graphene structure is dispersed in a synthetic resin and which has high mechanical strength; and a resin composite material obtained by the method. More specifically, disclosed herein are: a method for producing a resin composite material in which a carbon material having a graphene structure is uniformly dispersed in a synthetic resin selected from the group consisting of a crystalline resin and an amorphous resin, the method comprising, when the synthetic resin is a crystalline resin, shear-kneading the crystalline resin and the carbon material with a shear-kneading device at a temperature lower than a melting point of the crystalline resin and, when the synthetic resin is an amorphous resin, shear-kneading the amorphous resin and the carbon material with a shear-kneading device at a temperature close to a Tg of the crystalline resin; and a resin composite material obtained by the production method.