Abstract:
A light-emitting element having high emission efficiency and long lifetime is provided. By manufacturing a light-emitting device using the light-emitting element, the light-emitting device having low power consumption and long lifetime is provided. The light-emitting element is manufactured in which a light-emitting layer is included between a first electrode serving as an anode and a second electrode serving as a cathode. The light-emitting layer includes a first organic compound having a hole-transporting property, a second organic compound having an electron-transporting property, and an organometallic complex including a dibenzo[f,h]quinoxaline skeleton as a ligand. Further, a light-emitting device is manufactured using the light-emitting element.
Abstract:
Provided is a light-emitting element with high external quantum efficiency, or a light-emitting element with a long lifetime. The light-emitting element includes, between a pair of electrodes, a light-emitting layer including a guest material and a host material, in which an emission spectrum of the host material overlaps with an absorption spectrum of the guest material, and phosphorescence is emitted by conversion of an excitation energy of the host material into an excitation energy of the guest material. By using the overlap between the emission spectrum of the host material and the absorption spectrum of the guest material, the energy smoothly transfers from the host material to the guest material, so that the energy transfer efficiency of the light-emitting element is high. Accordingly, a light-emitting element with high external quantum efficiency can be achieved.
Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element is provided which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes, in which a combination of the first organic compound and the second organic compound forms an exciplex (excited complex). The light-emitting element transfers energy by utilizing an overlap between the emission spectrum of the exciplex and the absorption spectrum of the phosphorescent compound and thus has high energy transfer efficiency. Therefore, a light-emitting element having high external quantum efficiency can be obtained.
Abstract:
Provided is a novel heterocyclic compound, a novel heterocyclic compound that can be used in a light-emitting element, or a highly reliable light-emitting device, electronic device, and lighting device in each of which the light-emitting element using the novel heterocyclic compound is used. One embodiment of the present invention is a heterocyclic compound represented by General Formula (G1). In General Formula (G1), each of A1 and A2 independently represents nitrogen or carbon bonded to hydrogen, and at least one of A1 and A2 represents nitrogen; Ar represents a substituted or unsubstituted arylene group having 6 to 18 carbon atoms; B represents a substituted or unsubstituted fluorenyl group; and R1 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 13 carbon atoms.
Abstract:
A compound includes a benzofuropyrimidine skeleton or a benzothienopyrimidine skeleton, a first substituent, and a second substituent. Each of the first substituent and the second substituent includes a furan skeleton, a thiophene skeleton, or a pyrrole skeleton. The first substituent is bonded to a pyrimidine ring included in the benzofuropyrimidine skeleton or a pyrimidine ring included in the benzothienopyrimidine skeleton. The second substituent is bonded to a benzene ring included in the benzofuropyrimidine skeleton or a benzene ring included in the benzothienopyrimidine skeleton. The light-emitting element includes the compound.
Abstract:
As a novel substance having a novel skeleton, an organometallic complex with high emission efficiency which achieves improved color purity by a reduction of half width of an emission spectrum is provided. One embodiment of the present invention is an organometallic complex in which a β-diketone and a six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom are ligands. In General Formula (G1), X represents a substituted or unsubstituted six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom. Further, R1 to R4 each represent a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having low drive voltage is provided. Provided is a light-emitting element which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes. A combination of the first organic compound and the second organic compound forms an exciplex (excited complex). An emission spectrum of the exciplex overlaps with an absorption band located on the longest wavelength side of an absorption spectrum of the phosphorescent compound. A peak wavelength of the emission spectrum of the exciplex is longer than or equal to a peak wavelength of the absorption band located on the longest wavelength side of the absorption spectrum of the phosphorescent compound.
Abstract:
Provided is a light-emitting element with high external quantum efficiency, or a light-emitting element with a long lifetime. The light-emitting element includes, between a pair of electrodes, a light-emitting layer including a guest material and a host material, in which an emission spectrum of the host material overlaps with an absorption spectrum of the guest material, and phosphorescence is emitted by conversion of an excitation energy of the host material into an excitation energy of the guest material. By using the overlap between the emission spectrum of the host material and the absorption spectrum of the guest material, the energy smoothly transfers from the host material to the guest material, so that the energy transfer efficiency of the light-emitting element is high. Accordingly, a light-emitting element with high external quantum efficiency can be achieved.
Abstract:
A novel heterocyclic compound is provided. A novel heterocyclic compound that can be used for a light-emitting element is provided. A novel heterocyclic compound that can improve the reliability of a light-emitting element when used for a light-emitting element is provided. A light-emitting element, a light-emitting device, an electronic appliance, or a lighting device which includes the novel heterocyclic compound and is highly reliable is provided. One embodiment of the present invention is a heterocyclic compound represented by a general formula (G0). In the general formula (G0), A represents a dibenzo[f,h]quinoxalinyl group, B represents a substituted or unsubstituted fluorenyl group, and Ar represents a substituted or unsubstituted arylene group having 6 to 25 carbon atoms. A-Ar—B (G0)
Abstract:
It is an object of the present invention to provide an organometallic complex that can emit phosphorescence. In the following general formula (G1), X represents —O— or —N(R10)—. R1 to R9 each represent any of hydrogen, an alkyl group or a cycloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, an acyloxy group having 1 to 6 carbon atoms, a halogen group, a haloalkyl group, and an aryl group having 6 to 12 carbon atoms. In addition, R10 represents any of an alkyl group or a cycloalkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a heteroaryl group having 4 to 10 carbon atoms. Moreover, M represents an element belonging to Group 9 or 10.