Abstract:
At least one of an aqueous solution A containing lithium, an aqueous solution B containing iron, manganese, cobalt, or nickel, and an aqueous solution C containing a phosphoric acid includes graphene oxide. The aqueous solution A is dripped into the aqueous solution C, so that a mixed solution E including a precipitate D is prepared. The mixed solution E is dripped into the aqueous solution B, so that a mixed solution G including a precipitate F is prepared. The mixed solution G is subjected to heat treatment in a pressurized atmosphere, so that a mixed solution H is prepared, and the mixed solution H is then filtered. Thus, particles of a compound containing lithium and oxygen which have a small size are obtained.
Abstract:
A composite oxide with high diffusion rate of lithium is provided. Alternatively, a lithium-containing complex phosphate with high diffusion rate of lithium is provided. Alternatively, a positive electrode active material with high diffusion rate of lithium is provided. Alternatively, a lithium ion battery with high output is provided. Alternatively, a lithium ion battery that can be manufactured at low cost is provided. A positive electrode active material is formed through a first step of mixing a lithium compound, a phosphorus compound, and water, a second step of adjusting pH by adding a first aqueous solution to a first mixed solution formed in the first step, a third step of mixing an iron compound with a second mixed solution formed in the second step, a fourth step of performing heat treatment under a pressure more than or equal to 0.1 MPa and less than or equal to 2 MPa at a highest temperature more than 100° C. and less than or equal to 119° C. on a third mixed solution formed in the third step with a pH of more than or equal to 3.5 and less than or equal to 5.0.
Abstract:
A positive electrode active material includes a plurality of groups of particles. The plurality of groups of particles has a particle diameter of more than or equal to 300 nm and less than or equal to 3 μm. Each of the groups includes two or more particles. The two or more particles are each a lithium-containing complex phosphate including one or more of iron, nickel, manganese, and cobalt. The group of particles includes a first particle and a second particle each having a major diameter and a minor diameter in the upper surface when seen from a predetermined direction. The major diameters of the first and second particles are substantially parallel to each other. The major diameter of the first particle is two to six times larger than the minor diameter of the first particle and the minor diameter of the first particle is more than or equal to 20 nm and less than or equal to 130 nm.
Abstract:
To provide a manufacturing method of graphene oxide that allows mass production through a relatively simple process, at low costs, and with safety and efficiency. A hydrogen peroxide solution, sulfuric acid, and flake graphite are put in a reaction container, and the mixture is stirred to obtain expansion graphite. The synthesized expansion graphite is washed not with pure water but with a saturated aqueous solution of magnesium sulfate (MgSO4) or an organic solvent, whereby a large amount of sulfuric acid is contained between graphite layers. The expansion graphite is subjected to heat treatment or microwave irradiation to form expanded graphite, and a graphite layer is peeled by ultrasonic treatment and then oxidized to form a graphene compound.
Abstract:
At least one of an aqueous solution A containing lithium, an aqueous solution B containing iron, manganese, cobalt, or nickel, and an aqueous solution C containing a phosphoric acid includes graphene oxide. The aqueous solution A is dripped into the aqueous solution C, so that a mixed solution E including a precipitate D is prepared. The mixed solution E is dripped into the aqueous solution B, so that a mixed solution G including a precipitate F is prepared. The mixed solution G is subjected to heat treatment in a pressurized atmosphere, so that a mixed solution H is prepared, and the mixed solution H is then filtered. Thus, particles of a compound containing lithium and oxygen which have a small size are obtained.
Abstract:
An energy storage device having high capacity per weight or volume and a positive electrode active material for the energy storage device are manufactured. A surface of a main material included in the positive electrode active material for the energy storage device is coated with two-dimensional carbon. The main material included in the positive electrode active material is coated with a highly conductive material which has a structure expanding two-dimensionally and whose thickness is ignorable, whereby the amount of carbon coating can be reduced and an energy storage device having capacity close to theoretical capacity can be obtained even when a conduction auxiliary agent is not used or the amount of the conduction auxiliary agent is extremely small. Accordingly, the amount of carbon coating in a positive electrode and the volume of the conduction auxiliary agent can be reduced; consequently, the volume of the positive electrode can be reduced.
Abstract:
A hydrothermal synthesis for LiFePO4 is provided. First, each raw material solution is prepared using a degassed water in advance, second, those solution are mixed by dripping in a fixed order, and then those materials are reacted in a hydrothermal synthesis, so that LiFePO4 is obtained in a predesigned form.
Abstract:
A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 μm. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.
Abstract:
In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery which is resistant to external force in obtained. An opening is provided in a central portion of the secondary battery, and a terminal is formed in the opening. An outer edge of the secondary battery is fixed by thermocompression bonding. In addition, the central portion of the secondary battery is fixed by thermocompression bonding, so that the amount of bending is limited even when the outer edge portion of the secondary battery is bent.
Abstract:
An object is to reduce variation in shape of crystals that are to be formed. Solutions containing respective raw materials are made in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.