Abstract:
To provide a light-emitting device capable of being used in a wide temperature range. To provide a light-emitting device capable of being used in a low-temperature environment and a high-temperature environment. The light-emitting device includes a light-emitting panel, a secondary battery, a circuit, and a sealing structure. The light-emitting panel includes a light-emitting element. The light-emitting element can emit light with power supplied from the secondary battery. The circuit includes an antenna and can charge the secondary battery wirelessly. The light-emitting panel, the secondary battery, and the circuit are provided in the sealing structure. The sealing structure includes a portion through which light emitted from the light-emitting element passes.
Abstract:
An exterior body of a secondary battery includes an insertion portion for insertion of a third electrode including metal lithium. An injection and expelling portion through which an electrolyte solution can be replaced is further provided. Specifically, a nonaqueous secondary battery includes a positive electrode, a negative electrode, an electrolyte solution, a separator, and an exterior body covering the positive electrode, the negative electrode, and the electrolyte solution. The exterior body includes a positive electrode terminal to which the positive electrode is electrically connected, a negative electrode terminal to which the negative electrode is electrically connected, and an insertion portion for insertion of a third electrode including metal lithium.
Abstract:
The power storage device includes a positive electrode, a negative electrode, an electrolyte, and an exterior body. The positive electrode includes a positive electrode current collector and a positive electrode active material layer in contact with the positive electrode current collector. The negative electrode includes a negative electrode current collector and a negative electrode active material layer in contact with the negative electrode current collector. The positive electrode active material layer and the negative electrode active material layer overlap with each other. The positive electrode, the negative electrode, and the electrolyte are surrounded by the exterior body. When a length of the positive electrode active material layer is Py, a width of the positive electrode active material layer is Px, a length of the negative electrode active material layer is Ny, and a width of the negative electrode active material layer is Nx, Py>Px, Ny>Nx, and Ny>Py+Nx−Px are satisfied.
Abstract:
In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery that is durable even when force is externally applied thereto is provided. A cushioning material is provided in a region surrounded by an exterior body of a secondary battery. Specifically, a cushioning material is provided on the periphery of a current collector such that a sealing portion of an exterior body (film) is located outside the cushioning material.
Abstract:
Provided is a power storage device having a positive electrode and a negative electrode which are enveloped in an exterior body. The positive electrode has a first tab region which extends outside the exterior body so as to electrically connect the positive electrode to a positive electrode lead. Similarly, the negative electrode has a second tab region which extends outside the exterior body so as to electrically connect the negative electrode to a negative electrode lead. Each of the first tab region and the second tab region has a plurality of holes which are placed in the exterior body. A method for fabricating the power storage device is also disclosed.
Abstract:
A short-circuit between a positive electrode and a negative electrode due to a deposit on an electrode plate is prevented in a power storage unit such as a lithium-ion secondary battery. An electrode plate is covered by a folded insulating sheet. Bonding is performed on facing edges of the sheet which overlap with each other in a portion outer than the electrode plate. One or more openings are formed in the electrode plate, and the facing edges of the folded sheet are bonded to each other also in the opening. Such a bonding portion enables the sheet to be in closer contact with the electrode plate and prevents the displacement between the sheet and the electrode plate. When the electrode plate is deformed or vibrated, the sheet can be rubbed against a surface of the electrode plate, thereby removing a deposit from the surface of the electrode plate.
Abstract:
To provide a highly reliable power storage device, to improve the security of a power storage device, and to suppress deterioration of a power storage device, a power storage device includes, inside an exterior material, a positive electrode, a negative electrode facing the positive electrode, an electrolyte solution between the positive electrode and the negative electrode, and an adsorbent. A separation body which is impermeable to the electrolyte solution and permeable to a gas is provided between the electrolyte solution and the adsorbent.
Abstract:
Deterioration of a power storage device is reduced. Switches that control the connections of a plurality of power storage devices separately are provided. The switches are controlled with a plurality of control signals, so as to switch between charge and discharge of each of the power storage devices or between serial connection and parallel connection of the plurality of power storage devices. Further, a semiconductor circuit having a function of carrying out arithmetic is provided for the power storage devices, so that a control system of the power storage devices or a power storage system is constructed.
Abstract:
A secondary battery suitable for a portable information terminal or a wearable device is provided. An electronic device having a novel structure which can have various forms and a secondary battery that fits the forms of the electronic device are provided. In the secondary battery, scaling is performed using a film provided with depressions or projections that ease stress on the film due to application of external force. A pattern of depressions or projections is formed on the film by pressing, e.g., embossing.
Abstract:
In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery which is resistant to external force is obtained. An opening is provided in a central portion of the secondary battery; and a terminal is formed in the opening. An outer edge of the secondary battery is fixed by thermocompression bonding. In addition, the central portion of the secondary battery is fixed by thermocompression bonding, so that the amount of bending is limited even when the outer edge portion of the secondary battery is bent.