Abstract:
The invention provides methods of manufacturing alkanes from triglyceride oils produced through fermentation of oil-bearing microbes. The processes provided herein can utilize a variety of carbohydrate feedstocks including cane bagasse, sugar beet pulp, corn stover, glycerol, corn starch, sorghum, molasses, waste glycerol, and other renewable materials. These processes further comprise hydrotreating, hydrocracking, isomerization, distillation, and other petrochemical processes for use with oil-bearing microbes and products derived therefrom to manufacture fuels. Particular embodiments include the manufacture of ASTM D975 and ASTM D1655 compliant fuels. Genetically engineered microbes provided herein can be used in the manufacture of renewable diesel and renewable jet fuel.
Abstract:
The invention generally relates to the production of hydrocarbon compositions, such as a lipid, in microorganisms. In particular, the invention provides methods for extracting, recovering, isolating and obtaining a lipid from a microorganism and compositions comprising the lipid. The invention also discloses methods for producing hydrocarbon compositions for use as biodiesel, renewable diesel, jet fuel, and other materials.
Abstract:
Fuels and other valuable compositions and compounds can be made from oil extracted from microbial biomass and from oil-bearing microbial biomass via hydroprocessing and/or other chemical treatments, including the alkaline hydrolysis of glycerolipids and fatty acid esters to fatty acid salts.
Abstract:
Provided are methods for preparing chemically modified lipids. The lipids are obtained from heterotrophically cultured microalgae and are subjected to an epoxidation reaction. The microalgae include those from the genus Parachlorella, Prototheca, Chlorella, or strains having at least 85% nucleotide sequence identity in 23S rRNA sequences to a Parachlorella, Prototheca, or Chlorella strain that are cultured in a bioreactor substantially in the absence of light.