Abstract:
Methods (10) and devices (20; 30) for configuring multiple input multiple output, MIMO, wireless transmissions are provided. The method (10) comprises: participating (11), by a first network node (20), in a MIMO wireless transmission between a first network node (20) and a second network node 30 of a wireless network (20, 30), the wireless transmission being associated with a spatial channel matrix (40); while participating (11) in the MIMO wireless transmission: identifying (12), by the first network node (20) and in the spatial channel matrix (40), at least one spatial channel sub-matrix (41) having full rank; determining (13), by the first network node (20) and for each identified spatial channel sub-matrix (41), a candidate transmit configuration for the second network node (30); selecting (14), by the first network node (20) and from the determined candidate transmit configurations, a transmit configuration for the second network node (30); and configuring (15), by the first network node (20), the second network node (30) to use the transmit configuration.
Abstract:
The present invention relates to a radio-based object detection method. According to the method, first location information relating to an object of interest (31) are determined with a first device (11) using radio waves. Based on the first location information, a second device (21) from a plurality of candidate devices (21 to 29) is selected. A request for determining second location information relating to the object of interest (31) is transmitted via a telecommunication network to the second device (21).
Abstract:
A method of operating a device (101, 102) includes selecting between a first operational mode (8098) and a second operational mode (8099) for a wireless link (111) established between a terminal (102) and a base station (101) of the network; in response to selecting the first operational mode (8098): determining first values for antenna weights from a plurality of predefined candidate values; and in response to selecting the second operational mode (8099): determining second values for the antenna weights based on a calculation using a receive property of pilot signals (4021) communicated between the terminal (102) and the base station (101) as an input.
Abstract:
A method for performing wireless data communication is disclosed, which uses a first device and a second device, and which comprises the steps of a) transmitting an outgoing radar signal by the first device, b) determining, by the first device, a receive property of an incoming radar signal which is associated with the outgoing radar signal, and c) setting at least one parameter for performing the wireless data communication by the first device based on the receive property of the incoming radar signal.
Abstract:
A method (20) performed by a wireless terminal (10) in a wireless communication network (10, 30) is provided. In the method (20), based on a (fundamental) polarization tracking capability of the wireless terminal (10), at least one downlink polarization of at least one downlink communication between the wireless terminal (10) and an access node (30) of the wireless communication network (10, 30) is determined (204). A reference polarization from the at least one downlink polarization is selected (207). Based on the reference polarization and a (momentary) polarization tracking ability of the wireless terminal (10), at least one uplink polarization of at least one uplink communication between the wireless terminal (10) and the access node (30) is configured (210). A corresponding method (40) performed by the access node (30) is also provided, as well as the mentioned wireless terminal (10) and the access node (30).
Abstract:
A wireless communication device includes a wireless interface for conducting wireless communications with a network access node of a wireless network, the wireless interface having uplink and downlink beam forming capabilities. The wireless communication device further includes a control circuit configured to detect a predetermined condition and, in response to the detection, temporarily operate the wireless interface without beam correspondence between uplink and downlink operations; and transmit a message to the network access node that beam correspondence is not used by the wireless communication device.
Abstract:
The present application relates to methods for operating a wireless communication device (20). According to an embodiment, the method comprises transmitting, on a wireless link between the wireless communication device (20) and a further wireless communication device (30, 40, 50), at least one first signal (301) using a first polarization (501), transmitting, on the wireless link, at least one second signal (302) using a second polarization (502), and transmitting, on the wireless link, at least one third signal (303) using a third polarization (503). The first polarization (501), the second polarization (502), and the third polarization (503) are different from each other. Based on the at least one first signal (301), the at least one second signal (302), and the at least one third signal (303), channels of the wireless link associated with the at least one first signal (301), the at least one second signal (302), and the at least one third signal (303) are sounded.
Abstract:
Methods (10; 30) and devices (20; 40) for controlling polarization division multiplex in a wireless communication network are provided. A method (10) associated with an access node of the wireless communication network comprises: the access node (20) controlling (11A) a first multiple input multiple output, MIMO, transmission between the access node (20) and a first wireless terminal (40, 40A) to use a first set of time-frequency resources, to use a first MEMO spatial channel, and to use a first receive polarization state of the first wireless terminal (40, 40A); and controlling (11B) a second MIMO transmission between the access node (20) and a second wireless terminal (40, 40B) to use a second set of time-frequency resources which at least partially overlaps the first set of time-frequency resources, to use a second MIMO spatial channel which at least partially overlaps the first MIMO spatial channel, and to use a second receive polarization state of the second wireless terminal (40, 40B) which differs from the first receive polarization state.
Abstract:
A cellular multiple-input and multiple-output, MIMO, system comprises a base station having a plurality of antennas. Pilot signals are received by the base station in each frame of a sequence of frames (60). The base station analyzes the pilot signals to determine radio channel properties of radio channels between respectively each one of a plurality of terminals and the base station. The sequence of frames (60) comprises frames of a first frame type (61, 63, 64, 68) and frames of a second frame type (62, 69). Each frame of the second frame type (62, 69) have a greater number of time slots in which the base station receives the pilot signals than each frame of the first frame type (61, 63, 64, 68). The frames of the second frame type (62, 69) are included periodically in the sequence of frames (60).
Abstract:
The present invention relates to a method for operating a base station (21) in a wireless radio network. The base station (21) comprises a plurality of antennas (22) for transmitting radio frequency signals between the base station (21) and a user equipment (UE1, UE2, UE3). According to the method, at each antenna (22) a training signal sent from the user equipment at a first point in time (t1) is received and for each antenna a corresponding first configuration parameter (P1) is determined based on the training signal received at the corresponding antenna at the first point in time (t1). Furthermore, at each antenna (22) a training signal sent from the user equipment at a second point in time (t2), which is different from the first point in time (t1), is received and for each antenna (22) a corresponding secand configuration parameter (P2) is determined based on the training signal received at the second point in time (t2). For each antenna (22) a corresponding predicted configuration parameter (P3) is determined based on the first and second configuration parameters (P1, P2).