Abstract:
A wireless telecommunication system that comprises a base station and a terminal device communicating over a radio interface. The radio interface supports a downlink control channel for conveying control messages from the base station to the terminal device and a downlink data channel (e.g. a physical downlink shared channel) for conveying higher-layer messages from the base station to the terminal device. The control messages convey information on resource allocations for the higher-layer messages on the downlink data channel. The terminal device is configured to receive a control message from the base station conveying an indication of allocated transmission resources on the downlink data channel and determine a validity period for the control-plane message. During the validity period for the control message the terminal device is configured to receive a plurality of different higher-layer messages from the base station on the downlink data channel using the allocated transmission resources.
Abstract:
A communications device is configured to receive data from a wireless access interface transmitted by a mobile communications network. The wireless access interface provides a plurality of communications resource elements within a system bandwidth providing a host frequency range of a host carrier and reserved communications resources for preferable allocation to reduced capability devices, the reserved communications resources forming a virtual carrier. In each of a plurality of time divided units, the wireless access interface provides a shared channel of communications resources and a control channel formed within the communications resources of the system bandwidth of the host frequency range for communicating resource allocation messages to communications devices. The resource allocation messages allocate the communications resources of the shared channel to the communication devices within the system bandwidth and allocate the reserved communications resources to the reduced capability devices. The reserved communications resources include one or more communications resources which are not allocated for transmitting data to the reduced capability devices. A reduced capability device receives a resource allocation message from the control channel, allocating resources within the reserved communications resources of the virtual carrier for receiving data, determines the communications resources of the reserved communications resources which will contain signals representing the data from the communications resources allocated within the reserved communications resources by the received resource allocation message and excluding any of the one or more communications resources which are not allocated for transmitting data and receives the data from the determined communications resources of the reserved communications resources of the virtual carrier.
Abstract:
A network element forming a mobile communications network, and configured to provide a wireless access interface to one or more communications devices and to transmit downlink data to and receive uplink data from the communications devices via the wireless access interface. The downlink resources extend across a predetermined bandwidth and are time divided into plural timeframes. The network element includes a transmitter, and controller configured to control the transmitter to transmit control data to the communications devices in resources of a control channel formed from plural control channel modules formed from only part of the predetermined bandwidth and mutually exclusive from parts of the predetermined bandwidth from which the other control channel modules are formed. The plural control channel modules allow the control channel to be varied in bandwidth and adapted to the structure of the communications network, the communications devices being served and traffic conditions in the communications network.
Abstract:
A communications device transmitting/receiving data to/from a mobile communications network includes a transmitter to transmit data to the mobile communications network via a wireless access interface, a receiver to receive data from the mobile communications network via the wireless access interface, and a controller. The wireless access interface includes plural time divided temporal units and in each temporal unit a down-link control channel and a down-link shared channel. The temporal units may be sub-frames of an LTE carrier. The controller can control the receiver to receive downlink control channel information transmitted by the mobile communications network in one or more control channel elements of the downlink control channel, and to receive the downlink control channel information by searching the downlink control channel in a predetermined sub-set of plural possible sets of control channel elements in one or more of the temporal units according to a fixed aggregation level.
Abstract:
A wireless telecommunication system includes base stations for communicating with terminal devices. One or more base stations support a power boost operating mode in which a base station's available transmission power is concentrated in a subset of its available transmission resources to provide enhanced transmission powers as compared to transmission powers on these transmission resources when the base station is not operating in the power boost mode. A base station establishes an extent to which one or more base stations in the wireless telecommunications system supporting the power boost operating mode conveys an indication of this to a terminal device. The terminal device receives the indication and uses the corresponding information to control its acquisition of a base station of the wireless telecommunication system, for example by taking account of which base stations support power boosting and/or when power boosting is supported during a cell attach procedure.
Abstract:
A network element forming a mobile communications network, and configured to provide a wireless access interface to one or more communications devices and to transmit downlink data to and receive uplink data from the communications devices via the wireless access interface. The downlink resources extend across a predetermined bandwidth and are time divided into plural timeframes. The network element includes a transmitter, and controller configured to control the transmitter to transmit control data to the communications devices in resources of a control channel formed from plural control channel modules formed from only part of the predetermined bandwidth and mutually exclusive from parts of the predetermined bandwidth from which the other control channel modules are formed. The plural control channel modules allow the control channel to be varied in bandwidth and adapted to the structure of the communications network, the communications devices being served and traffic conditions in the communications network.
Abstract:
A communications device transmits and receives data via a wireless access interface in a mobile communications network. First resource allocation messages are received by communications devices to allocate one or more of plural communications resource elements of a host frequency range of a host carrier. Second resource allocation messages are received by reduced capability devices to allocate one or more of a first section of the communications resources within the first frequency range for preferable allocation to the reduced capability devices of a first virtual carrier, the first resource allocation messages identifying one or more of the communications resource of the host carrier allocated to the communications devices with reference to a first reference frequency and the second resource allocation messages identifying one or more communications resources of the first virtual carrier allocated to the reduced capability devices with reference to a second reference frequency within the first virtual carrier.
Abstract:
A communications device can transmit and receive data via a wireless access interface provided by a mobile communications network including an infrastructure equipment for transmitting signals to or receiving signals from the communications device. The wireless access interface provides a primary carrier within a first frequency range, which forms a primary cell providing a contiguous set of communications resources across the first frequency range and providing one or more control channels for transmitting signaling message to the communications device or receiving signaling messages from the infrastructure equipment. A controller in combination with a receiver and transmitter can receive from the infrastructure equipment a signaling message identifying a nested carrier including one or more candidate channels selected from a predefined plurality of candidate channels within a second frequency range which is different to and mutually exclusive from the first frequency range.
Abstract:
A communications system communicating data to/from a communications terminal includes infrastructure equipment forming a mobile communications network to transmit/receive data to/from the communications terminal via a wireless access interface, the communications terminal configured to transmit/receive data to/from the infrastructure equipment. The communications terminal can receive transmission data to the infrastructure equipment at a buffer, transmit a resource request message requesting resources of the wireless access interface to the infrastructure equipment in response to receiving the data for transmission to the infrastructure equipment, and receive a resource allocation message from the infrastructure equipment. The resource allocation message allocates resources of the wireless access interface to the communications terminal. A characteristic of the resource request message transmitted by the communications terminal to the infrastructure equipment provides an indication of one of a predetermined set of transmission priority levels for transmitting the buffered data to the infrastructure equipment.
Abstract:
A wireless telecommunications system that supports a virtual carrier mode operation in which downlink communications are made by a base station while a terminal device receives at least some communications from the base station within a restricted subset of transmission resources. When there is to be a change in system information, the base station transmits to the terminal device an indication that updated system information is to be broadcast by the base station to plural terminal devices and the terminal device seeks to acquire the updated system information using the restricted subset of transmission resources. The base station further conveys to the terminal device an allocation of uplink transmission resources for acknowledgement signalling for the updated system information and the terminal device responds by using the allocated uplink transmission resources to convey to the base station an indication whether or not the terminal device has acquired the updated system information.