Graphene channel silicon carbide power semiconductor transistor

    公开(公告)号:US11158708B1

    公开(公告)日:2021-10-26

    申请号:US16486494

    申请日:2018-09-25

    Abstract: The invention provides a graphene channel silicon carbide power semiconductor transistor, and its cellular structure thereof. Characterized in that, a graphene strip serving as a channel is embedded in a surface of the P-type body region and two ends of the graphene strip are respectively contacted with a boundary between the N+-type source region and the P-type body region and a boundary between the P-type body region and the N-type drift region, and the graphene strip is distributed in a cellular manner in a gate width direction, a conducting channel of a device is still made of graphene; in the case of maintaining basically invariable on-resistance and current transmission capacity, the P-type body regions are separated by the graphene strip, thus enhancing a function of assisting depletion, which further reduces an overall off-state leakage current of the device, and improves a breakdown voltage.

    TRANSVERSE ULTRA-THIN INSULATED GATE BIPOLAR TRANSISTOR HAVING HIGH CURRENT DENSITY
    12.
    发明申请
    TRANSVERSE ULTRA-THIN INSULATED GATE BIPOLAR TRANSISTOR HAVING HIGH CURRENT DENSITY 有权
    具有高电流密度的横向超薄绝缘栅双极晶体管

    公开(公告)号:US20150270377A1

    公开(公告)日:2015-09-24

    申请号:US14439715

    申请日:2012-12-27

    Abstract: A transverse ultra-thin insulated gate bipolar transistor having current density includes: a P substrate, where the P substrate is provided with a buried oxide layer thereon, the buried oxide layer is provided with an N epitaxial layer thereon, the N epitaxial layer is provided with an N well region and P base region therein, the P base region is provided with a first P contact region and an N source region therein, the N well region is provided with an N buffer region therein, the N well region is provided with a field oxide layer thereon, the N buffer region is provided with a P drain region therein, the N epitaxial layer is provided therein with a P base region array including a P annular base region, the P base region array is located between the N well region and the P base region, the P annular base region is provided with a second P contact region and an N annular source region therein, and the second P contact region is located in the N annular source region. The present invention greatly increases current density of a transverse ultra-thin insulated gate bipolar transistor, thus significantly improving the performance of an intelligent power module.

    Abstract translation: 具有电流密度的横向超薄绝缘栅双极晶体管包括:P基板,其中P基板在其上设置有掩埋氧化物层,所述掩埋氧化物层在其上设置有N外延层,提供N外延层 在其中具有N阱区域和P基极区域,P基极区域中设置有第一P接触区域和N源极区域,N阱区域中设置有N个缓冲区域,N阱区域设置有 在其上的场氧化物层,N缓冲区在其中设置有P漏极区,N外延层中设置有包括P环状基极区的P基区阵列,P基区阵列位于N阱之间 区域和P基区域中,P环状基部区域设置有第二P接触区域和N环状源极区域,第二P接触区域位于N环状源极区域中。 本发明大大增加了横向超薄绝缘栅双极晶体管的电流密度,从而显着提高了智能功率模块的性能。

    Lateral insulated gate bipolar transistor with low turn-on overshoot current

    公开(公告)号:US11367785B2

    公开(公告)日:2022-06-21

    申请号:US17606216

    申请日:2020-03-31

    Abstract: A lateral insulated gate bipolar transistor (IGBT) with a low turn-on overshoot current is provided to reduce a peak value of a current flowing through a device during turn-on of a second gate pulse while preventing a current capability and a withstand voltage capability from being degraded. The lateral IGBT includes: a buried oxygen arranged on a P-type substrate, an N-type drift region arranged on the buried oxygen, on which a P-type body region and an N-type buffer region are arranged, a P-type collector region arranged in the N-type buffer region, a field oxide layer arranged above the N-type drift region, a P-type well region arranged in the P-type body region, and a P-type emitter region and an emitter region arranged in the P-type well region, where inner boundaries of the foregoing 4 regions are synchronously recessed to form a pinch-off region. A gate oxide layer is arranged on a surface of the P-type body region, and a polysilicon gate is arranged on the gate oxide layer. The polysilicon gate includes a first gate located above the surface of the P-type body region and a second gate located above the pinch-off region and the N-type drift region. The first gate is connected to a first gate resistor, and the second gate is connected to a second gate resistor.

    Self-adaptive synchronous rectification control system and method of active clamp flyback converter

    公开(公告)号:US11081967B2

    公开(公告)日:2021-08-03

    申请号:US16617508

    申请日:2018-09-28

    Abstract: The invention discloses a self-adaptive synchronous rectification control system and a self-adaptive synchronous rectification control method of an active clamp flyback converter. The control system comprises a sampling and signal processing circuit, a control circuit with a microcontroller as a core and a gate driver. According to the control method, a switching-on state, an early switching-off state, a late switching-off state and an exact switching-off state of a secondary synchronous rectifier of the active clamp flyback converter can be directly detected, and the synchronous rectifier and a switching-on time of the synchronous rectifier in next cycle can be controlled according to a detection result. After several cycles of self-adaptive control, the synchronous rectifier enters the exact switching-on state, thus avoiding oscillation of an output waveform of the active clamp flyback converter.

Patent Agency Ranking