Abstract:
The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
Abstract:
A photovoltaic cell may include a hydrogenated amorphous silicon layer including a n-type doped region and a p-type doped region. The n-type doped region may be separated from the p-type doped region by an intrinsic region. The photovoltaic cell may include a front transparent electrode connected to the n-type doped region, and a rear electrode connected to the p-type doped region. The efficiency may be optimized for indoor lighting values by tuning the value of the H2/SiH4 ratio of the hydrogenated amorphous silicon layer.
Abstract:
A manufacturing method of an electrochemical sensor comprises forming a graphene layer on a donor substrate, laminating a film of dry photoresist on the graphene layer, removing the donor substrate to obtain an intermediate structure comprising the film of dry photoresist and the graphene layer, and laminating the intermediate structure onto a final substrate with the graphene layer in electrical contact with first and second electrodes positioned on the final substrate. The film of dry photoresist is then patterned to form a microfluidic structure on the graphene layer and an additional dry photoresist layer is laminated over the structure. In one type of sensor manufactured by this process, the graphene layer acts as a channel region of a field-effect transistor, whose conductive properties vary according to characteristics of an analyte introduced into the microfluidic structure.
Abstract:
The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
Abstract:
The disclosure relates to an encapsulated flexible electronic device comprising a flexible electronic device, wherein the flexible electronic device is protected by a protective coating layer, a first cover sheet and a second cover sheet being made of patterned and developed dry photoresist films. The encapsulated flexible electronic device may be used to directly realize different type of electronic devices, such as smart sensor devices.
Abstract:
In one embodiment, a method includes forming a plurality of thermocouples coupled in series by forming first metal segments comprising a first metal, each of the first metal segments having a L-shape. The method further includes forming a plurality of deep openings to expose a first contact region of each of the first metal segments, and forming a plurality of shallow openings to expose a second contact region of each of the first metal segments. The method further includes forming second metal segments comprising a second metal over the dielectric layer. The second metal is a different type of metal than the first metal. Each of the second metal segments contacts one of the first contact region of the first metal segments through one of the plurality of deep openings and contacts one of the second contact region of the first metal segments through one of the plurality of shallow openings. The plurality of thermocouples is formed within a building component.
Abstract:
A photovoltaic cell may include a hydrogenated amorphous silicon layer including a n-type doped region and a p-type doped region. The n-type doped region may be separated from the p-type doped region by an intrinsic region. The photovoltaic cell may include a front transparent electrode connected to the n-type doped region, and a rear electrode connected to the p-type doped region. The efficiency may be optimized for indoor lighting values by tuning the value of the H2/SiH4 ratio of the hydrogenated amorphous silicon layer.
Abstract:
The disclosure relates to an encapsulated flexible electronic device comprising a flexible electronic device, wherein the flexible electronic device is protected by a protective coating layer, a first cover sheet and a second cover sheet being made of patterned and developed dry photoresist films. The encapsulated flexible electronic device may be used to directly realize different type of electronic devices, such as smart sensor devices.
Abstract:
In one embodiment, a method includes forming a plurality of thermocouples coupled in series by forming first metal segments comprising a first metal, each of the first metal segments having a L-shape. The method further includes forming a plurality of deep openings to expose a first contact region of each of the first metal segments, and forming a plurality of shallow openings to expose a second contact region of each of the first metal segments. The method further includes forming second metal segments comprising a second metal over the dielectric layer. The second metal is a different type of metal than the first metal. Each of the second metal segments contacts one of the first contact region of the first metal segments through one of the plurality of deep openings and contacts one of the second contact region of the first metal segments through one of the plurality of shallow openings. The plurality of thermocouples is formed within a building component.
Abstract:
Solar thin film modules are provided with reduced lateral dimensions of isolation trenches and contact trenches, which provide for a series connection of the individual solar cells. To this end lithography and etch techniques are applied to pattern the individual material layers, thereby reducing parasitic shunt leakages compared to conventional laser scribing techniques. In particular, there may be series connected solar cells formed on a flexible substrate material that are highly efficient in indoor applications.